分组背包模型讲解和【题解】【洛谷P1757】——通天之分组背包(附C++代码实现)

1.概念解析

    分组背包‌是背包问题的一种变体,其核心在于将物品分成若干组,每组最多只能选择一个物品。这种设定使得分组背包问题在处理上有其独特之处

2.举例了解

通天之分组背包

通往洛谷的传送门

题目背景

直达通天路·小 A 历险记第二篇

题目描述

01 01 01 背包问世之后,小 A 对此深感兴趣。一天,小 A 去远游,却发现他的背包不同于 01 01 01 背包,他的物品大致可分为 k k k 组,每组中的物品相互冲突,现在,他想知道最大的利用价值是多少。

输入格式

两个数 m , n m,n m,n,表示一共有 n n n 件物品,总重量为 m m m

接下来 n n n 行,每行 3 3 3 个数 a i , b i , c i a_i,b_i,c_i ai,bi,ci,表示物品的重量,利用价值,所属组数。

输出格式

一个数,最大的利用价值。

输入输出样例

输入 #1

45 3
10 10 1
10 5 1
50 400 2

输出 #1

10

提示

0 ≤ m ≤ 1000 0 \leq m \leq 1000 0m1000 1 ≤ n ≤ 1000 1 \leq n \leq 1000 1n1000 1 ≤ k ≤ 100 1\leq k\leq 100 1k100 a i , b i , c i a_i, b_i, c_i ai,bi,ciint 范围内。

思路解析

    建议先食用01背包问题模型讲解和【题解】—— [NOIP2005 普及组] 采药

1.状态:dp[i][j]表示背包容量为j只选前i组物品的最大价值。

    根据问题的定义来定义就行了。

2.初始条件:dp[i][j] = dp[i - 1][j];

    当增加一个物品的选项的时候,至少前面的dp[i-1][j]的取法是合法的,可以直接采用。

3.状态转移方程: d p [ i ] [ j ] = m a x ( d p [ j − a [ i ] [ k ] . w e i g h t ] + a [ i ] [ k ] . v a l u e ) dp[i][j]=max(dp[j-a[i][k].weight]+a[i][k].value) dp[i][j]=max(dp[ja[i][k].weight]+a[i][k].value)

    只要你看懂了 01 01 01背包问题,那理解这个状态转移方程应该也不难。

    i枚举的是每一组,j枚举的是重量,k枚举的是第i组的每一件物品。在编写代码中,我们使用一个数组num储存每一组的物品个数。使用a[i][j]储存第i组的第j个物品的信息。

4.答案:dp[cnt][m],其中cnt为组数,m为背包容量。
5.时间复杂度: O ( n m ) O(nm) O(nm)

    对于时间复杂度,由于在循环中枚举了每一组的每一件物品,就相当于枚举了所有物品。总共循环 n n n次。

    注意:通过观察,此题中的组号为1~k(不一定会达到 k k k),可以直接找出最大的编号,即为组数。在实际使用中可以进行略微改动。

3.示例代码

#include<bits/stdc++.h>
using namespace std;
#define MAXM 1010//m的数据范围,可根据题目修改
#define MAXN 1010//n的数据范围(也作最大组数),可根据题目修改
//用n储存物品件数,m储存背包重量
//用dp[i][j]背包容量为j只选前i组物品的最大价值,num[i]表示第i组的物品个数 
int n, m, dp[MAXN][MAXM], num[MAXN], cnt;//cnt储存物品组数 
struct object{// 储存物品的重量和价值
	int weight, value;
}a[MAXN][MAXN];//a[i][j]表示第i组的第j件物品 
int main(){
	scanf("%d%d", &m, &n);
	for (int i = 1; i <= n; i++){
		int w, v, l;
		scanf("%d%d%d", &w, &v, &l);
		cnt = max(cnt, l);//更新组数 
		a[l][++num[l]].weight = w;//储存当前物品的重量和大小 
		a[l][num[l]].value = v;
	}
	for (int i = 1; i <= cnt; i++)//枚举组数 
		for (int j = 1; j <= m; j++){//枚举重量
			dp[i][j] = dp[i - 1][j];//先继承上一层的状态 
			for (int k = 1; k <= num[i]; k++)//枚举每一组的物品
				if (a[i][k].weight <= j)//符合条件,状态转移
					dp[i][j] = max(dp[i][j], dp[i - 1][j - a[i][k].weight] + a[i][k].value);
		}
	printf("%d\n", dp[cnt][m]);//注意输出
	return 0;
}

4.滚动数组优化

    既然 01 01 01背包问题可以使用滚动数组优化,那分组背包行不行呢?当然是可以的,如下:

#include<bits/stdc++.h>
using namespace std;
#define MAXM 1010//m的数据范围,可根据题目修改
#define MAXN 1010//n的数据范围(也作最大组数),可根据题目修改
//用n储存物品件数,m储存背包重量
//用dp[i][j]背包容量为j只选前i组物品的最大价值,num[i]表示第i组的物品个数 
int n, m, dp[MAXM], num[MAXN], cnt;//cnt储存物品组数 
struct object{//储存每件物品的重量和价值
    int weight, value;
}a[MAXN][MAXN];//a[i][j]表示第i组的第j件物品 
int main(){
    scanf("%d%d", &m, &n);
    for (int i = 1; i <= n; i++){
        int w, v, l;
        scanf("%d%d%d", &w, &v, &l);
        cnt = max(cnt, l);//更新组数 
        a[l][++num[l]].weight = w;//储存当前物品的重量和大小 
        a[l][num[l]].value = v;
    }
    for (int i = 1; i <= cnt; i++)//枚举组数 
        for (int j = m; j >= 0; j--)//枚举重量
            for (int k = 1; k <= num[i]; k++)//枚举每一组的物品
                if (a[i][k].weight <= j)//符合条件,状态转移
                    dp[j] = max(dp[j], dp[j - a[i][k].weight] + a[i][k].value);
    printf("%d\n", dp[m]);//注意输出
    return 0;
}

喜欢就订阅此专辑吧

欢迎关注蓝胖子编程教育

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

蓝胖子教编程

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值