ZOJ-3524 Crazy Shopping(拓扑排序+完全背包)

题意

一个有 n n 个节点 m 条边的 DAG D A G (有向无环图),每个节点都有无限个物品(体积 ci c i ,价值 vi v i ),同一节点的物品相同,不同节点的物品不同。现在有一个体积为 W W 的背包,从节点 x 出发。已知背包内物品的体积为 w w ,走过长度为 l 的路需要花费 wl w l 的体力。求获得最大价值时的最小体力。
这里写图片描述

思路

DAG D A G 有关的 dp d p 问题可以采用拓扑排序,先以结点 x x 开始进行无重复广搜求出入度(注意一个结点不能重复搜索),然后拓扑排序求出一个 dp 的顺序。
接下来定义 dpi,j d p i , j 为在结点 i i ,用 j 的体力能得到的最优解。一个 dp d p 数组内的元素包括价值和总体力花费,有限考虑价值高,在考虑体力小。然后在一个结点上跑完全背包,再向其他后序结点行走即可。
有时较难直接发现顺序的 dp d p 问题,可以通过计算得到顺序,如用拓扑得到 DAG D A G 的顺序。

代码

#include<iostream>
#include<cmath>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<vector>
#include<queue>
#define FOR(i,x,y) for(int i=(x);i<=(y);i++)
#define DOR(i,x,y) for(int i=(x);i>=(y);i--)
typedef long long LL;
using namespace std;
struct node
{
    int v,e; //价值,体力 
    bool operator <(const node &_)
    {
        if(v==_.v)return e>_.e;
        return v<_.v;
    }
    bool exist(){return (~(v&e))?1:0;}
    void update(node _)
    {
        if(!(*this).exist() || _.exist()&&(*this)<_)(*this)=_;
    }
}dp[603][2003];//dp[i][j]表示在i点,身上有重量为j物品时的信息。
struct edge
{
    int to,cost;
};
vector<edge>E[603];
int order[603],od;
int C[603],V[603];
int n,m,W,x;
int ans;

void toposort()
{
    int in_degree[603]={0};
    queue<int>q;
    while(!q.empty())q.pop();
    q.push(x);
    while(!q.empty())
    {
        int u=q.front();q.pop();
        FOR(i,0,(int)E[u].size()-1)
        {
            int v=E[u][i].to;
            if(!in_degree[v])
                q.push(v);
            in_degree[v]++;
        }
    }
    q.push(x);
    od=0;
    while(!q.empty())
    {
        int u=q.front();q.pop();
        order[++od]=u;
        FOR(i,0,(int)E[u].size()-1)
        {
            int v=E[u][i].to;
            if(--in_degree[v]==0)q.push(v);
        }
    }
    return;
}

int main()
{
    while(~scanf("%d%d%d%d",&n,&m,&W,&x))
    {
        node ans=(node){-1,-1};
        memset(dp,-1,sizeof(dp));
        dp[x][0]=(node){0,0};
        FOR(i,1,n)scanf("%d%d",&C[i],&V[i]);
        FOR(i,1,n)E[i].clear();
        FOR(i,1,m)
        {
            int u,v,w;
            scanf("%d%d%d",&u,&v,&w);
            E[u].push_back((edge){v,w});
        }
        toposort();
        FOR(i,1,od)
        {
            int u=order[i];
            FOR(j,0,W-C[u])
                if(dp[u][j].exist())
                    dp[u][j+C[u]].update((node){dp[u][j].v+V[u],dp[u][j].e});
            FOR(j,0,(int)E[u].size()-1)
            {
                int v=E[u][j].to,w=E[u][j].cost;
                FOR(k,0,W)
                    if(dp[u][k].exist())
                        dp[v][k].update((node){dp[u][k].v,dp[u][k].e+k*w});
            }
        }
        FOR(i,1,od)FOR(j,0,W)ans.update(dp[order[i]][j]);
        printf("%d\n",ans.e);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值