题意
一个有
n
n
个节点 条边的
DAG
D
A
G
(有向无环图),每个节点都有无限个物品(体积
ci
c
i
,价值
vi
v
i
),同一节点的物品相同,不同节点的物品不同。现在有一个体积为
W
W
的背包,从节点 出发。已知背包内物品的体积为
w
w
,走过长度为 的路需要花费
wl
w
l
的体力。求获得最大价值时的最小体力。
思路
和
DAG
D
A
G
有关的
dp
d
p
问题可以采用拓扑排序,先以结点
x
x
开始进行无重复广搜求出入度(注意一个结点不能重复搜索),然后拓扑排序求出一个 的顺序。
接下来定义
dpi,j
d
p
i
,
j
为在结点
i
i
,用 的体力能得到的最优解。一个
dp
d
p
数组内的元素包括价值和总体力花费,有限考虑价值高,在考虑体力小。然后在一个结点上跑完全背包,再向其他后序结点行走即可。
有时较难直接发现顺序的
dp
d
p
问题,可以通过计算得到顺序,如用拓扑得到
DAG
D
A
G
的顺序。
代码
#include<iostream>
#include<cmath>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<vector>
#include<queue>
#define FOR(i,x,y) for(int i=(x);i<=(y);i++)
#define DOR(i,x,y) for(int i=(x);i>=(y);i--)
typedef long long LL;
using namespace std;
struct node
{
int v,e; //价值,体力
bool operator <(const node &_)
{
if(v==_.v)return e>_.e;
return v<_.v;
}
bool exist(){return (~(v&e))?1:0;}
void update(node _)
{
if(!(*this).exist() || _.exist()&&(*this)<_)(*this)=_;
}
}dp[603][2003];//dp[i][j]表示在i点,身上有重量为j物品时的信息。
struct edge
{
int to,cost;
};
vector<edge>E[603];
int order[603],od;
int C[603],V[603];
int n,m,W,x;
int ans;
void toposort()
{
int in_degree[603]={0};
queue<int>q;
while(!q.empty())q.pop();
q.push(x);
while(!q.empty())
{
int u=q.front();q.pop();
FOR(i,0,(int)E[u].size()-1)
{
int v=E[u][i].to;
if(!in_degree[v])
q.push(v);
in_degree[v]++;
}
}
q.push(x);
od=0;
while(!q.empty())
{
int u=q.front();q.pop();
order[++od]=u;
FOR(i,0,(int)E[u].size()-1)
{
int v=E[u][i].to;
if(--in_degree[v]==0)q.push(v);
}
}
return;
}
int main()
{
while(~scanf("%d%d%d%d",&n,&m,&W,&x))
{
node ans=(node){-1,-1};
memset(dp,-1,sizeof(dp));
dp[x][0]=(node){0,0};
FOR(i,1,n)scanf("%d%d",&C[i],&V[i]);
FOR(i,1,n)E[i].clear();
FOR(i,1,m)
{
int u,v,w;
scanf("%d%d%d",&u,&v,&w);
E[u].push_back((edge){v,w});
}
toposort();
FOR(i,1,od)
{
int u=order[i];
FOR(j,0,W-C[u])
if(dp[u][j].exist())
dp[u][j+C[u]].update((node){dp[u][j].v+V[u],dp[u][j].e});
FOR(j,0,(int)E[u].size()-1)
{
int v=E[u][j].to,w=E[u][j].cost;
FOR(k,0,W)
if(dp[u][k].exist())
dp[v][k].update((node){dp[u][k].v,dp[u][k].e+k*w});
}
}
FOR(i,1,od)FOR(j,0,W)ans.update(dp[order[i]][j]);
printf("%d\n",ans.e);
}
return 0;
}