题意
一张
n
n
个节点 条边的图,每个节点代表一个城市,每条边代表连接两个城市,花费一定的路径(双向)。你选择了
H
H
个城市,现在要这些城市中打工。在第 个城市打工可以赚
Ci
C
i
,但打工钱必须要花
Di
D
i
元钱拿到工作证,工只能打一次。刚开始你有
S
S
元钱。问能否从节点 出发并在节点
1
1
结束,并拿到指定的 个城市的工作证?
1≤N≤100
1
≤
N
≤
100
1≤M≤5000
1
≤
M
≤
5000
1≤S≤1000000
1
≤
S
≤
1000000
1≤H≤15
1
≤
H
≤
15
思路
刚开始肯定要预处理出 n n 个城市互达的最短路。然后把 个城市压为下标进行状压 DP D P 。其中 dpi,j d p i , j 保存去过 i i 这些城市,人在 号城市,手中最多可以持有多少钱。每次转移只用枚举接下来去哪个城市即可,注意一开始先预处理出第一个去的城市,求答案时要再回到第一个城市,手中的钱数随时都不能为负数。
代码
#include<iostream>
#include<cmath>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#define FOR(i,x,y) for(int i=(x);i<=(y);i++)
#define DOR(i,x,y) for(int i=(x);i>=(y);i--)
#define lowbit(x) ((x)&-(x))
#define tomax(a,b) (a=max(a,b))
#define tomin(a,b) (a=min(a,b))
typedef long long LL;
using namespace std;
int dp[(1<<15)+3][18],bin[(1<<15)+3];
int dis[103][103];
int pos[18],c[18],d[18];
int n,m,s,h;
int main()
{
FOR(i,1,15)bin[1<<i]=i;
int T;
scanf("%d",&T);
while(T--)
{
scanf("%d%d%d",&n,&m,&s);
memset(dis,0x3f,sizeof(dis));
FOR(i,1,n)dis[i][i]=0;
FOR(i,1,m)
{
int u,v,w;
scanf("%d%d%d",&u,&v,&w);
dis[u][v]=dis[v][u]=min(dis[u][v],w);
}
FOR(k,1,n)FOR(i,1,n)FOR(j,1,n)tomin(dis[i][j],dis[i][k]+dis[j][k]);
FOR(i,1,n)FOR(j,1,n)if(dis[i][j]>1e9)dis[i][j]=-1;
scanf("%d",&h);
FOR(i,1,h)scanf("%d%d%d",&pos[i],&c[i],&d[i]);
memset(dp,-1,sizeof(dp));
FOR(i,1,h)if(~dis[1][i]&&s-dis[1][pos[i]]-d[i]>=0)dp[1<<i-1][i]=s-dis[1][pos[i]]-d[i]+c[i];
FOR(i,1,(1<<h)-1)
for(int j=i;j;j^=lowbit(j))
for(int k=(~i)&(1<<h)-1;k;k^=lowbit(k))
{
int _j=bin[lowbit(j)]+1,_k=bin[lowbit(k)]+1;
if(~dp[i][_j]&&~dis[pos[_j]][pos[_k]]&&dp[i][_j]-dis[pos[_j]][pos[_k]]-d[_k]>=0)
tomax(dp[i|(1<<_k-1)][_k],dp[i][_j]-dis[pos[_j]][pos[_k]]-d[_k]+c[_k]);
}
int ans=-1;
FOR(i,1,h)if(~dp[(1<<h)-1][i]&&~dis[pos[i]][1])tomax(ans,dp[(1<<h)-1][i]-dis[pos[i]][1]);
printf(~ans?"YES\n":"NO\n");
}
return 0;
}