POJ-3230 Travel(最短路+状压DP)

本文介绍了一种使用状态压缩动态规划(状压DP)的方法来解决一个关于在多个城市间旅行并打工的问题。该问题的目标是从特定城市出发,访问选定城市并返回起点,同时确保资金足够支付所有费用。文章提供了详细的算法实现步骤及C++代码。
摘要由CSDN通过智能技术生成

题意

一张 n n 个节点 m 条边的图,每个节点代表一个城市,每条边代表连接两个城市,花费一定的路径(双向)。你选择了 H H 个城市,现在要这些城市中打工。在第 i 个城市打工可以赚 Ci C i ,但打工钱必须要花 Di D i 元钱拿到工作证,工只能打一次。刚开始你有 S S 元钱。问能否从节点 1 出发并在节点 1 1 结束,并拿到指定的 H 个城市的工作证?
1N100 1 ≤ N ≤ 100
1M5000 1 ≤ M ≤ 5000
1S1000000 1 ≤ S ≤ 1000000
1H15 1 ≤ H ≤ 15

思路

刚开始肯定要预处理出 n n 个城市互达的最短路。然后把 H 个城市压为下标进行状压 DP D P 。其中 dpi,j d p i , j 保存去过 i i 这些城市,人在 j 号城市,手中最多可以持有多少钱。每次转移只用枚举接下来去哪个城市即可,注意一开始先预处理出第一个去的城市,求答案时要再回到第一个城市,手中的钱数随时都不能为负数。

代码

#include<iostream>
#include<cmath>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#define FOR(i,x,y) for(int i=(x);i<=(y);i++)
#define DOR(i,x,y) for(int i=(x);i>=(y);i--)
#define lowbit(x) ((x)&-(x))
#define tomax(a,b) (a=max(a,b))
#define tomin(a,b) (a=min(a,b))
typedef long long LL;
using namespace std;
int dp[(1<<15)+3][18],bin[(1<<15)+3];
int dis[103][103];
int pos[18],c[18],d[18];
int n,m,s,h;

int main()
{
    FOR(i,1,15)bin[1<<i]=i;
    int T;
    scanf("%d",&T);
    while(T--)
    {
        scanf("%d%d%d",&n,&m,&s);
        memset(dis,0x3f,sizeof(dis));
        FOR(i,1,n)dis[i][i]=0;
        FOR(i,1,m)
        {
            int u,v,w;
            scanf("%d%d%d",&u,&v,&w);
            dis[u][v]=dis[v][u]=min(dis[u][v],w);
        }
        FOR(k,1,n)FOR(i,1,n)FOR(j,1,n)tomin(dis[i][j],dis[i][k]+dis[j][k]);
        FOR(i,1,n)FOR(j,1,n)if(dis[i][j]>1e9)dis[i][j]=-1;
        scanf("%d",&h);
        FOR(i,1,h)scanf("%d%d%d",&pos[i],&c[i],&d[i]);
        memset(dp,-1,sizeof(dp));
        FOR(i,1,h)if(~dis[1][i]&&s-dis[1][pos[i]]-d[i]>=0)dp[1<<i-1][i]=s-dis[1][pos[i]]-d[i]+c[i];
        FOR(i,1,(1<<h)-1)
            for(int j=i;j;j^=lowbit(j))
                for(int k=(~i)&(1<<h)-1;k;k^=lowbit(k))
                {
                    int _j=bin[lowbit(j)]+1,_k=bin[lowbit(k)]+1;
                    if(~dp[i][_j]&&~dis[pos[_j]][pos[_k]]&&dp[i][_j]-dis[pos[_j]][pos[_k]]-d[_k]>=0)
                        tomax(dp[i|(1<<_k-1)][_k],dp[i][_j]-dis[pos[_j]][pos[_k]]-d[_k]+c[_k]);
                }
        int ans=-1;
        FOR(i,1,h)if(~dp[(1<<h)-1][i]&&~dis[pos[i]][1])tomax(ans,dp[(1<<h)-1][i]-dis[pos[i]][1]);
        printf(~ans?"YES\n":"NO\n");
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值