层次分析,critic以及topsis

本文介绍了几种常见的评价算法,包括AHP层次分析法、EWM熵权法和Critic客观定权法,以及TOPSIS多维度因素综合评价模型。AHP通过建立层次结构和判断矩阵进行一致性检验来确定权重;EWM利用熵值计算波动性权重;Critic基于标准差和相关系数计算权重;TOPSIS通过计算与理想解的距离进行评价。这些方法在复杂决策和多因素评估中具有广泛应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本节介绍基本的评价类算法,以及给出相应的代码模板。

AHP(层次分析法)

主观评价法,结合定性和定量来分析,对难以完全定量的复杂系统做出决策。
算法步骤:(1)建立层次结构模型。(2)构造判断矩阵。(3)填写判断矩阵并进行一致性检验。(4)填充权重矩阵得出结果。
(1)构建层次结构
层级  首先,需要有层次,上图是一个三层的结构。是一个基本的结构,可以加深层次,具体实例如下:
在这里插入图片描述
(2)构造判断矩阵。就根本目的来说,要得到评价体系,也就是要得到权重。为了得到同一层次元素对上一层的元素的重要性。将该层次元素两两比较。具体实例:
为了得到
在这里插入图片描述手段是构造如下的,两两比较的判断矩阵:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值