数据预处理中的数据正向化,标准化和归一化

数据的预处理是一个重要的步骤,而正向化、标准化和归一化是常用的预处理方法。

1. 数据正向化

定义: 数据正向化是将数据转化为对模型有利的正面方向。这通常在评价体系中使用,比如当某一指标数值越大表示越好时,称之为“正向指标”;而当数值越小表示越好时,称之为“反向指标”。为了统一处理,反向指标需要进行正向化。

方法: 一般来说,反向指标的正向化可以通过以下方式实现

方法: 一般来说,反向指标的正向化可以通过以下方式实现:
𝑌正向化=最大值+最小值−y

y是反向指标的原始值。

应用场景: 当你的模型需要处理多个不同方向的指标时,正向化可以统一指标的方向,使得模型更好地进行比较和优化。

2. 数据标准化

定义: 数据标准化是指将不同单位或量级的数据转换到一个统一的尺度,通常是通过调整数据的均值为0,标准差为1的标准正态分布。

方法: 标准化通常采用以下公式:Z=x-u/\sigma

X是原始数据,u是数据的均值,σ是数据的标准差。

应用场景:<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值