数据的预处理是一个重要的步骤,而正向化、标准化和归一化是常用的预处理方法。
1. 数据正向化
定义: 数据正向化是将数据转化为对模型有利的正面方向。这通常在评价体系中使用,比如当某一指标数值越大表示越好时,称之为“正向指标”;而当数值越小表示越好时,称之为“反向指标”。为了统一处理,反向指标需要进行正向化。
方法: 一般来说,反向指标的正向化可以通过以下方式实现
方法: 一般来说,反向指标的正向化可以通过以下方式实现: 𝑌正向化=最大值+最小值−y y是反向指标的原始值。
应用场景: 当你的模型需要处理多个不同方向的指标时,正向化可以统一指标的方向,使得模型更好地进行比较和优化。
2. 数据标准化
定义: 数据标准化是指将不同单位或量级的数据转换到一个统一的尺度,通常是通过调整数据的均值为0,标准差为1的标准正态分布。
方法: 标准化通常采用以下公式:
X是原始数据,u是数据的均值,σ是数据的标准差。
应用场景:<