单调栈
单调栈主要用来解决:对于给定的一串数据序列,对于其中的某一元素,找到在它左边比它小的元素。例题:单调栈
对于例题而言,最简单的思路就是枚举,简单而言,但是显然会超时。那么就要做优化。代码:
#include<iostream>
using namespace std;
const int maxn = 1e5 + 10;
int stk[maxn],tt;
int main(){
int n;
cin>>n;
for(int i=0;i<n;i++){
int x;
cin>>x;
while(tt && stk[tt] >= x) tt--; //栈非空并判断单调性
if(tt) cout<<stk[tt]<<" ";
else cout<<"-1"<<" ";
stk[++tt] = x; //入栈
}
return 0;
}
优化思路:用栈存放可能的答案。用x表示序号,如果第x个元素比第x-1个元素小,那么元素x-1永远不可能是答案,需要被剪枝,元素x-1从栈中弹出,这样就得到了从栈底到栈顶单调增的序列。
//模板
int stk[N],tt = -1;
for(int i=0;i<n;i++){
while(tt && check(stk[tt],i)) tt--;
stk[++tt] = i;
}
单调队列
单调队列:主要用来优化滑动窗口。例题:单调队列
#include<iostream>
#include<cstdio>
const int maxn = 1e6 + 10;
using namespace std;
int a[maxn],que[maxn],head = 0,tail = -1; //初始化队列
int main(){
int n , k;
cin>>n>>k;
for(int i = 0; i<n ;i++) scanf("%d",&a[i]);
for(int i = 0; i<n ;i++){
if(head <= tail && que[head] < i - k + 1) head ++; // 判断队头在滑动窗口中
while(head <= tail && a[que[tail]]>=a[i]) tail--; //构造单调队列
que[++tail] = i;
if(i >= k - 1) printf("%d ",a[que[head]]); //入队
}
head = 0, tail = -1;
cout<<endl;
for(int i = 0; i<n ;i++){
if(head <= tail && que[head] < i - k + 1) head ++;
while(head<=tail && a[que[tail]]<=a[i]) tail--;
que[++tail] = i;
if(i >= k - 1) printf("%d ",a[que[head]]);
}
return 0;
}
上下两部分对称,分别求最小和最大。
模板:
int que[N],head = 0, tail = -1;
for(int i = 0;i<n;i++){
if(head <= tail && check(head)) head ++;
while(head <= tail && check(que[tail],que[i])) tail--;
que[++tail] = i;
}
KMP
KMP主要任务:匹配和求next数组。模式串为S,模板串为p。
模板:
char s[maxn],p[maxn]; //下标从1开始
cin>>s+1>>p+1; //下标从1开始,方便。
//求next[]数组
for(int i = 2,j = 0;i<=m;i++){ //显然,next[1] = 0;
while(j && p[i] != p[j+1]) j = ne[j];
if(p[i] == p[j+1]) j++;
ne[i] = j;
}
//匹配
for(int i = 1, j = 0; i<=n ;i++){
while(j && s[i] != p[j + 1]) j = ne[j];
if(s[i] == p[j+1]) j++;
if(j == m){
//匹配成功
}
}