dp2:线性dp、区间dp、计数dp.

线性dp
  动态规划时间复杂度分析,状态数目与状态转移次数相乘。

数字三角形

数字三角形
以集合的观点考虑dp问题。
在这里插入图片描述

#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxn = 510;
int n,ans;
int a[maxn][maxn],f[maxn][maxn];
int main(){
    cin>>n;
    for(int i=0;i<=n;i++){
        for(int j=0;j<= n+1;j++)
         f[i][j] = 0x3f3f3f3f * -1; //初始化f处理边界问题
    }
    for(int i=1;i<=n;i++){
        for(int j=1;j<=i;j++){
            scanf("%d",&a[i][j]);
        }
    }
    f[1][1] = a[1][1];
    for(int i=2;i<=n;i++){
        for(int j=1;j<=i;j++){
            f[i][j] = max(f[i-1][j-1]+a[i][j],f[i-1][j]+a[i][j]);
        }
    }
    ans = -1 * 0x3f3f3f3f; //第n层找最优
    for(int i=1;i<=n;i++) ans = max(ans, f[n][i]);
    cout<<ans;
    return 0;
}

时间复杂度,总共n2个状态,对于每个状态转移计算一次,复杂度为n2.

最长上升子序列

最长上升子序列
以集合的观点分析。对于状态而言,一般从低维到高维考虑。
在这里插入图片描述

#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
const int maxn = 1010;
int n,a[maxn],f[maxn];
int main(){
    cin>>n;
    for(int i=1;i<=n;i++){
        scanf("%d",&a[i]);
    }
    for(int i=1;i<=n;i++) f[i] = 1;
    for(int i=2;i<=n;i++){
        for(int j=1;j<=i;j++){
            if(a[j]>=a[i]) continue;
            f[i] = max(f[i],f[j] + 1);
        }
    }
    int ans = 0;
    for(int i=1;i<=n;i++){
        ans = max(ans,f[i]);
    }
    cout<<ans;
    return 0;
}

时间复杂度分析,状态数量为n,每次状态转移计算n次。复杂度为n2.

最长公共子序列

最长公共子序列
在这里插入图片描述

#include<iostream>
#include<algorithm>
using namespace std;
const int maxn = 1010;
int n,m;
char a[maxn],b[maxn];
int f[maxn][maxn];
int main(){
    cin>>n>>m;
    scanf("%s%s",a + 1,b + 1);
    for(int i=1;i<=n;i++){
        for(int j=1;j<=m;j++){
            if(a[i] == b[j]) f[i][j] = f[i-1][j-1] + 1; 
            else{
                f[i][j] = max(f[i][j-1],f[i-1][j]);
            }
        }
    }
    cout<<f[n][m]<<endl;
    return 0;
}
/* 对于状态转移,当a[i] == b[j],f[i][j]由f[i-1][j-1]转移而来
不相等时,通过f[i-1][j]与f[i][j-1]转移而来
*/

区间dp

石子合并
对于区间dp而言,状态表示一般表示为区间的形式。
在这里插入图片描述

#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
const int maxn = 310,inf = 0x3f3f3f3f;
int n;
int a[maxn],s[maxn],f[maxn][maxn];
int main(){
    cin>>n;
    for(int i=1;i<=n;i++) scanf("%d",&a[i]);
    for(int i=1;i<=n;i++) s[i] = s[i-1] + a[i];
    
    for(int len = 2;len <= n;len++){
        for(int l = 1;l + len -1 <= n;l++){
            int r = l + len -1;
            f[l][r] = inf;
            for(int k = l;k < r;k++){
                f[l][r] = min(f[l][r],f[l][k]+f[k + 1][r] + s[r]-s[l-1]);
            }
        //   for(int i=1;i<=n;i++)
        //   {
        //       for(int j=1;j<=n;j++)
        //       cout<<f[i][j]<<" ";
        //       cout<<endl;
        //   }
        //   cout<<endl;
        }
    }
    cout<<f[1][n]<<endl;
    return 0;
}

对于区间类dp而言,构造结果表的方式不同于线性dp.简单来说,先枚举区间长度,再枚举区间的起点和终点。

计数dp

整数划分
在这里插入图片描述可以用完全背包的角度,看待这个问题。总数n相当于体积为n的背包,数字1-i相当于每件物品的体积为1-i。每件物品数量无限。

#include<iostream>
#include<algorithm>
using namespace std;
const int maxn = 1010,mod = 1e9 + 7;
int n;
int f[maxn];
//f[i,j] = f[i-1,j] + f[i,j-i];
int main(){
    cin>>n;
    f[0] = 1;
    for(int i=1;i<=n;i++){
        for(int j=i;j<=n;j++){
            f[j] = (f[j] + f[j-i]) % mod;
        }
    }
    cout<<f[n];
    return 0;
}

在这里插入图片描述

#include<iostream>
#include<algorithm>
using namespace std;
const int maxn = 1010,mod = 1e9 + 7;
int n;
int f[maxn][maxn];
int main(){
    cin>>n;
    f[1][1] = 1;
    for(int i=2;i<=n;i++){
        for(int j=1;j<=i;j++){
            f[i][j] = (f[i-1][j-1] + f[i-j][j]) % mod;
        }
    }
    int ans = 0;
    for(int i=1;i<=n;i++){
        ans = (ans + f[n][i]) % mod;
    }
    cout<<ans;
    return 0;
}
  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值