DP——线性DP、区间DP

DP——线性DP、区间DP

  • 线性DP
    • 最长上升子序列
    • 最长公共子序列
    • 最短编辑距离
  • 区间DP
    • 石子合并

最长上升子序列

AcWing 896. 最长上升子序列 II

  • 知识点:线性DP、整数二分
  • 思路:
    • 状态表示:f[i]表示长度为i的所有子序列,值为长度为i的所有子序列末端最小元素(这个所有是对应已经访问的所有数组元素)。
    • 状态计算:对于任意序列中的元素x,若f[i]为f[1]~f[len]中(len是当前最长子序列长度)小于x的最大元素,则f[i+1]=x。
    • 补充:
      • f[]一定单调递增,可以用反证法去证明
      • 可以用整数二分来优化查找过程
#include<iostream>

using namespace std;

const int N = 110000;

int f[N], n, len;

int main()
{
    cin >> n;
    for(int i = 1; i <= n; i++)
    {
        int x;
        cin >> x;
        int l = 0, r = len;
        while(l < r)
        {
            int mid = l + r + 1 >> 1;
            if(x > f[mid])l = mid;
            else r = mid - 1;
        }
        len = max(len, l + 1);
        f[l + 1] = x;
    }
    
    cout << len;
    return 0;
}

最长公共子序列

AcWing 897. 最长公共子序列

  • 知识点:线性DP
  • 思路:
    • 状态表示:f[i][j]表示字符串A的前i个字符与字符串B的前j个字符的最长公共子序列集合,值为集合子序列长度最大值。
    • 状态计算:
      • 状态划分为四种情况:
        • A[i]在最长公共子序列中,B[j]也在:f[i-1][j-1]+1
        • A[i]在B[j]不在:fx
        • A[i]不在B[j]在:fy
        • 都不在:f[i-1][j-1]
      • 因为f[i][j-1]>=fx,f[i-1][j]>=fy,而题目要求f[i[j]存的是最长的公共子序列长度,所以可以用这两个来代替fx和fy。
      • 转移方程:f[i][j] = max(f[i-1][j-1]+(a[i]==b[j], f[i-1][j], f[i][j-1])
    • 状态初始化:
      • 起点:f[0][0] = 0
      • 非法状态:0
#include<iostream>

using namespace std;

const int N = 1100;

int f[N][N], n, m;
string a, b;

int main()
{
    cin >> n >> m >> a >> b;
    a = ' ' + a, b = ' ' + b;
    for(int i = 1; i <= n; i++)
        for(int j = 1; j <= m; j++)
            f[i][j] = max(f[i - 1][j - 1] + (a[i] == b[j]), max(f[i - 1][j], f[i][j - 1]));
    cout << f[n][m];
    return 0;
}


最短编辑距离

AcWing 902. 最短编辑距离

  • 知识点:线性DP
  • 思路:
    • 状态表示:f[i][j]表示A的前i个字符与B的前j个字符编辑后相同的所有方案数,值为最小编辑次数。
    • 状态计算:
      • 根据操作分为四种状态转移情况:
        • 无操作(满足A[i]==B[j]):f[i-1][j-1]
        • 删除A[i]:f[i-1][j] + 1
        • 添加A[i]:f[i][j-1] + 1
        • 修改A[i]:f[i-1][j-1] + 1
      • 转移公式:f[i][j] = min(f[i-1][j-1] - (A[i]==B[j]), min(f[i-1][j], f[i][j-1])) + 1
    • 状态初始化:
      • 非法状态:f[i][j] = 0x3f3f3f3f(足够大)
      • 起点边界:f[i][0]=i, f[0][j]=j(i = 0~n, j = 0~m)
#include<iostream>
#include<cstring>

using namespace std;

const int N = 1100;

int n, m, f[N][N];
string a, b;

int main()
{
    cin >> n >> a >> m >> b;
    a = ' ' + a, b = ' ' + b;
    
    memset(f, 0x3f, sizeof f);
    for(int i = 0; i <= n; i++)f[i][0] = i;
    for(int i = 0; i <= m; i++)f[0][i] = i;
    
    for(int i = 1; i <= n; i++)
        for(int j = 1; j <= m; j++)
            f[i][j] = min(f[i - 1][j - 1] + - (a[i] == b[j]), min(f[i - 1][j], f[i][j - 1])) + 1;
    
    cout << f[n][m];
    return 0;
}



区间DP

AcWing 282. 石子合并

  • 知识点:区间DP、一维前缀和
  • 思路:
    • 状态表示:f[i][j]表示合并第i~j堆石子的方案集合,值为合并的最小代价。
    • 状态计算:f[i][j] = min(f[i][k]+f[k][j]) + s[j] - s[i-1](k取i~j,s为石子质量的前缀和数组 )
    • 状态初始化:
      • 非法状态:f[i][j] = 0x3f3f3f3f(足够大)
      • 起点边界:f[i][i] = 0(i 取 1~n)
#include<iostream>
#include<cstring>

using namespace std;

const int N = 310;

int n, s[N], f[N][N];

int main()
{
    cin >> n;
    memset(f, 0x3f, sizeof f);
    for(int i = 1, a; i <= n; i++)
    {
        cin >> a;
        s[i] = s[i - 1] + a;
        f[i][i] = 0;
    }
    
    for(int i = 2; i <= n; i++)
        for(int l = 1; l + i - 1 <= n; l++)
        {
            int r = l + i - 1;
            for(int j = l; j < r; j++)
                f[l][r] = min(f[l][r], f[l][j] + f[j + 1][r] + s[r] - s[l - 1]);
        }
    
    cout << f[1][n];
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值