第一种方法是Morris Traversal
是O(n)时间复杂度,且不需要额外空间的方法。缺点是需要修改树。
通过将叶子节点的right指向其中序后继。
代码如下
vector<int> inorderTraversal(TreeNode *root) {
vector<int> res;
TreeNode * cur = root;
TreeNode * pre = NULL;
while (cur)
{
if (cur->left == NULL)
{
res.push_back(cur->val);
cur = cur->right;
}
else
{
pre = cur->left;
while (pre->right && pre->right != cur) pre = pre->right;
if (pre->right == NULL)
{
pre->right = cur;
cur = cur->left;
}
if (pre->right == cur)
{
pre->right = NULL;
res.push_back(cur->val);
cur = cur->right;
}
}
}
return res;
}
第二种方法利用栈,模拟递归过程
vector<int> inorderTraversal(TreeNode *root) {
vector<int> res;
vector<TreeNode*> stack;
stack.push_back(root);
set<TreeNode*> visited;
while (stack.size())
{
TreeNode * cur = stack.back();
stack.pop_back();
if (!cur) continue;
if (visited.find(cur) == visited.end())//visited for the first time
{
stack.push_back(cur->right);
stack.push_back(cur);
stack.push_back(cur->left);
visited.insert(cur);
}
else//visited for the second time
res.push_back(cur->val);
}
return res;
}
第三种方法来自《数据结构》
将所有左子节点入栈,当没有左子结点时取栈顶元素打印并转移到右子节点
vector<int> inorderTraversal(TreeNode *root) {
vector<int> res;
vector<TreeNode*> stack;
TreeNode* cur = root;
while (stack.size() || cur)
{
if (cur)
{
stack.push_back(cur);
cur = cur->left;
}
else
{
cur = stack.back();
stack.pop_back();
res.push_back(cur->val);
cur = cur->right;
}
}
return res;
}