P3383 【模板】线性筛素数

3 篇文章 0 订阅

P3383 【模板】线性筛素数

题目描述
如题,给定一个范围N,你需要处理M个某数字是否为质数的询问(每个数字均在范围1-N内)

输入输出格式
输入格式:
第一行包含两个正整数N、M,分别表示查询的范围和查询的个数。

接下来M行每行包含一个不小于1且不大于N的整数,即询问该数是否为质数。

输出格式:
输出包含M行,每行为Yes或No,即依次为每一个询问的结果。

输入输出样例
输入样例#1: 
100 5
2
3
4
91
97
输出样例#1: 
Yes
Yes
No
No
Yes
说明
时空限制:500ms 128M

数据规模:

对于30%的数据:N<=10000,M<=10000

对于100%的数据:N<=10000000,M<=100000

换成欧拉筛法

原理:任何一个合数都可以表示成一个质数和一个数的乘积

#include <vector>
#include <iostream>
using namespace std;
static const auto io_sync_off = []() {
    std::ios::sync_with_stdio(false);
    std::cin.tie(nullptr);
    return nullptr;
}();
const int maxn = 10000005;
bool is_not_pr[maxn];
int tot = 0, prime[maxn];

void getList()
{
    is_not_pr[1] = 1;//1不是素数
    for (int i = 2; i <= maxn; ++i)
    {
        if (!is_not_pr[i])
            prime[++tot] = i;
        for (int j = 1; j <= tot && i * prime[j] <= maxn; ++j)
        {
            //i*质数是合数,也就是i*素数不是素数
            is_not_pr[i * prime[j]] = 1;
            //prime[j]是i的因子,prime[j]能提供的因子i也能提供所以break
            if (i % prime[j] == 0)
                break;
        }
    }
}

int main()
{
    int n, m, k;
    cin >> n >> m;
    getList();
    for (int i = 0; i < m; ++i)
    {
        cin >> k;
        if (!is_not_pr[k])
            cout << "Yes" << endl;
        else
            cout << "No" << endl;
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值