P3383 【模板】线性筛素数
题目描述
如题,给定一个范围N,你需要处理M个某数字是否为质数的询问(每个数字均在范围1-N内)
输入输出格式
输入格式:
第一行包含两个正整数N、M,分别表示查询的范围和查询的个数。
接下来M行每行包含一个不小于1且不大于N的整数,即询问该数是否为质数。
输出格式:
输出包含M行,每行为Yes或No,即依次为每一个询问的结果。
输入输出样例
输入样例#1:
100 5
2
3
4
91
97
输出样例#1:
Yes
Yes
No
No
Yes
说明
时空限制:500ms 128M
数据规模:
对于30%的数据:N<=10000,M<=10000
对于100%的数据:N<=10000000,M<=100000
换成欧拉筛法
原理:任何一个合数都可以表示成一个质数和一个数的乘积
#include <vector>
#include <iostream>
using namespace std;
static const auto io_sync_off = []() {
std::ios::sync_with_stdio(false);
std::cin.tie(nullptr);
return nullptr;
}();
const int maxn = 10000005;
bool is_not_pr[maxn];
int tot = 0, prime[maxn];
void getList()
{
is_not_pr[1] = 1;//1不是素数
for (int i = 2; i <= maxn; ++i)
{
if (!is_not_pr[i])
prime[++tot] = i;
for (int j = 1; j <= tot && i * prime[j] <= maxn; ++j)
{
//i*质数是合数,也就是i*素数不是素数
is_not_pr[i * prime[j]] = 1;
//prime[j]是i的因子,prime[j]能提供的因子i也能提供所以break
if (i % prime[j] == 0)
break;
}
}
}
int main()
{
int n, m, k;
cin >> n >> m;
getList();
for (int i = 0; i < m; ++i)
{
cin >> k;
if (!is_not_pr[k])
cout << "Yes" << endl;
else
cout << "No" << endl;
}
return 0;
}