微服务架构-06-sentinel

目录

熔断

Sentinel降级入门

概述

准备工作

Sentinel降级入门

Sentinel 异常处理

小节面试分析

Sentinel降级策略分析(拓展)

慢调用比例

异常比例

异常数量

小节面试分析

Sentinel热点规则分析(重点)

概述

快速入门

特定参数设计

小节面试分析

Sentinel系统规则(了解)

概述

快速入门

小节面试分析

Sentinel授权规则(重要)

概述

快速入门

小节面试分析

总结(Summary)

重难点分析

FAQ分析


熔断

@Component
public class ServiceBlockExceptionHandler implements BlockExceptionHandler {
    /**一旦服务被限流或降级了,sentinel系统底层提供的拦截器会
     * 调用此方法对异常进行处理*/
    @Override
    public void handle(HttpServletRequest
                                   httpServletRequest,
                       HttpServletResponse httpServletResponse,
                       BlockException e) throws Exception {
        //1.方案1,异常继续抛出
        //throw e;
        //2.方案2,对异常内容进行处理(例如返回给客户端一个看得懂的信息)
        //1)向客户端输出数据用什么?输出流对象
        //2)如何获取输出流对象?(标准的javaEE规范中,要借助HttpServletResponse对象)
        //3)当客户端输出数据时,除了业务响应数据外,还要做什么?
        //设置响应数据的编码

        httpServletResponse.setCharacterEncoding("utf-8");
        //告诉浏览器服务端它响应的数据类型,以及以什么编码进行显示。
        //httpServletResponse.setContentType("text/html;charset=utf-8");
        httpServletResponse.setContentType("application/json;charset=utf-8");
        PrintWriter out = httpServletResponse.getWriter();

        Map<String , Object> map = new HashMap<>();
        map.put("status",429);
        map.put("level","等不到天黑");
        if(e instanceof DegradeException){
           // out.println("<h2>服务暂时不可用<h2>");
            map.put("message","服务暂时不可用");
        }else{
            //out.println("<h2>访问太频繁,稍等片刻<h2>");
            map.put("message","访问太频繁,稍等片刻");
        }
        //将map对象转化为json格式字符串
        String jsonStr =
                new ObjectMapper().writeValueAsString(map);//map转为json
        //{“status”: 429,"message": "..."}
        out.println(jsonStr);
        out.flush();//所有字符流都要刷新
    }
}

Sentinel降级入门







概述

除了流量控制以外,对调用链路中不稳定的资源进行熔断降级也是保障高可用的重要措施之一。由于调用关系的复杂性,如果调用链路中的某个资源不稳定,最终会导致请求发生堆积。
Sentinel 熔断降级会在调用链路中某个资源出现不稳定状态时(例如调用超时或异常比例升高),对这个资源的调用进行限制,让请求快速失败,避免影响到其它的资源而导致级联错误。当资源被降级后,在接下来的降级时间窗口之内,对该资源的调用都自动熔断(默认行为是抛出 DegradeException)。
 

准备工作

修改ConumserController 类中的doRestEcho01方法,假如没有创建即可,基于此方法演示慢调用过程下的限流,代码如下:

     //AtomicLong 类支持线程安全的自增自减操作
    private AtomicLong atomicLong=new AtomicLong(1);
    @GetMapping("/consumer/doRestEcho1")
    public  String doRestEcho01() throws InterruptedException {
        //consumerService.doGetResource();
        //获取自增对象的值,然后再加1
        long num=atomicLong.getAndIncrement();
        if(num%2==0){//模拟50%的慢调用比例
           Thread.sleep(200);
        }
        String url="http://localhost:8081/provider/echo/"+server;
        //远程过程调用-RPC
        return restTemplate.getForObject(url,String.class);//String.class调用服务响应数据类型
    }

Sentinel降级入门

第一步:服务启动后,选择要降级的链路,如图所示:

 第二步:选择要降级的链路,如图所示:

这里表示熔断策略为慢调用比例,表示链路请求数超过3时,假如平均响应时间假如超过200毫秒的有50%,则对请求进行熔断,熔断时长为10秒钟,10秒以后恢复正常。

第三步:对指定链路进行刷新,多次访问测试,假如出现了降级熔断,会出现如下结果:

 我们也可以进行断点调试,在DefaultBlockExceptionHandler中的handle方法内部加断点,分析异常类型,假如异常类型为DegradeException则为降级熔断。

Sentinel 异常处理

系统提供了默认的异常处理机制,假如默认处理机制不满足我们需求,我们可以自己进行定义。定义方式上可以直接或间接实现BlockExceptionHandler接口,并将对象交给spring管理。

@Component
public class ServiceBlockExceptionHandler implements BlockExceptionHandler {
    @Override
    public void handle(HttpServletRequest request, HttpServletResponse response,BlockException e) throws Exception {
         //response.setStatus(601);
         //设置响应数据的编码
         response.setCharacterEncoding("utf-8");
         //告诉客户端要响应的数据类型以及客户端以什么编码呈现数据
         response.setContentType("application/json;charset=utf-8");
         PrintWriter pw=response.getWriter();
         Map<String,Object> map=new HashMap<>();
         if(e instanceof DegradeException){//降级、熔断
             map.put("status",601);
             map.put("message", "服务被熔断了!");
         }else if(e instanceof FlowException){
             map.put("status",602);
             map.put("message", "服务被限流了!");
         }else{
             map.put("status",603);
             map.put("message", "Blocked by Sentinel (flow limiting)");
         }
         //将map对象转换为json格式字符串
         String jsonStr=new ObjectMapper().writeValueAsString(map);
         pw.println(jsonStr);
         pw.flush();
    }
}

小节面试分析

  • 何为降级熔断?(让外部应用停止对服务的访问,生活中跳闸,路障设置-此路不通)
  • 为什么要进行熔断呢?(平均响应速度越来越慢或经常出现异常,这样可能会导致调用链堆积,最终系统崩溃)
  • Sentinel中限流,降级的异常父类是谁?(BlockException)
  • Sentinel 出现降级熔断时,系统底层抛出的异常是谁?(DegradeException)
  • Sentinel中异常处理接口是谁?(BlockExceptionHandler)
  • Sentinel中异常处理接口下默认的实现类为? (DefaultBlockExceptionHandler)
  • 假如Sentinel中默认的异常处理规则不满足我们的需求怎么办?(自己定义)
  • 我们如何自己定义Sentinel中异常处理呢?(直接或间接实现BlockExceptionHandler )

Sentinel降级策略分析(拓展)

Sentinel熔断降级支持慢调用比例、异常比例、异常数三种策略。

慢调用比例

慢调用指耗时大于阈值RT(Response Time)的请求称为慢调用,阈值RT由用户设置。其属性具体含义说明如下:

 慢调用逻辑中的状态分析如下:

  • 熔断(OPEN):请求数大于最小请求数并且慢调用的比率大于比例阈值则发生熔断,熔断时长为用户自定义设置。
  • 探测(HALFOPEN):当熔断过了定义的熔断时长,状态由熔断(OPEN)变为探测(HALFOPEN)。
  • 关闭(CLOSED):如果接下来的一个请求小于最大RT,说明慢调用已经恢复,结束熔断,状态由探测(HALF_OPEN)变更为关闭(CLOSED),如果接下来的一个请求大于最大RT,说明慢调用未恢复,继续熔断,熔断时长保持一致
    注意:Sentinel默认统计的RT上限是4900ms,超出此阈值的都会算作4900ms,若需要变更此上限可以通过启动配置项-Dcsp.sentinel.statistic.max.rt=xxx来配置
     

异常比例

当资源的每秒请求数大于等于最小请求数,并且异常总数占通过量的比例超过比例阈值时,资源进入降级状态。其属性说明如下:

异常比例中的状态分析如下:

  • 熔断(OPEN):当请求数大于最小请求并且异常比例大于设置的阈值时触发熔断,熔断时长由用户设置。
  • 探测(HALFOPEN):当超过熔断时长时,由熔断(OPEN)转为探测(HALFOPEN)
  • 关闭(CLOSED):如果接下来的一个请求未发生错误,说明应用恢复,结束熔断,状态由探测(HALF_OPEN)变更为关闭(CLOSED)。如果接下来的一个请求继续发生错误,说明应用未恢复,继续熔断,熔断时长保持一致。

异常数量

当资源近1分钟的异常数目超过阈值(异常数)之后会进行服务降级。注意,由于统计时间窗口是分钟级别的,若熔断时长小于60s,则结束熔断状态后仍可能再次进入熔断状态。其属性说明如下:

基于异常数的状态分析如下:

  • 熔断(OPEN):当请求数大于最小请求并且异常数量大于设置的阈值时触发熔断,熔断时长由用户设置。
  • 探测(HALFOPEN):当超过熔断时长时,由熔断(OPEN)转为探测(HALFOPEN)
  • 关闭(CLOSED):如果接下来的一个请求未发生错误,说明应用恢复,结束熔断,状态由探测(HALF_OPEN)变更为关闭(CLOSED)如果接下来的一个请求继续发生错误,说明应用未恢复,继续熔断,熔断时长保持一致。

小节面试分析

  • Sentinel 降级熔断策略有哪些?(慢调用,异常比例,异常数)
  • Sentinel 熔断处理逻辑中的有哪些状态?(Open,HalfOpen,Closed)
  • Sentinel 对服务调用进行熔断以后处于什么状态?(熔断打开状态-Open)
  • Sentinel 设置的熔断时长到期以后,Sentinel的熔断会处于什么状态?(探测-HalfOpen,假如再次访问时依旧响应时间比较长或依旧有异常,则继续熔断)
  • Sentinel 中的熔断逻辑恢复正常调用以后,会出现什么状态?(熔断关闭-closed)

Sentinel热点规则分析(重点)





概述

何为热点?热点即经常访问的数据。比如:

  • 商品 ID 为参数,统计一段时间内最常购买的商品 ID 并进行限制。
  • 用户 ID 为参数,针对一段时间内频繁访问的用户 ID 进行限制。

热点参数限流会统计传入参数中的热点数据,并根据配置的限流阈值与模式,对包含热点参数的资源调用进行限流。热点参数限流可以看做是一种特殊的流量控制,仅对包含热点参数的资源调用生效。其中,Sentinel会利用 LRU 策略统计最近最常访问的热点参数,结合令牌桶算法来进行参数级别的流控。
 

快速入门

第一步:定义热点业务代码,如图所示:

     //http://ip:port/consumer/doFindById?id=10
        @GetMapping("/consumer/findById")
        @SentinelResource("res")
        public String doFindById(@RequestParam("id") Integer id){
            return "resource id is "+id;
        }

第二步:服务启动后,选择要限流的热点链路,如图所示:

 第三步:设置要限流的热点,如图所示:

热点规则的限流模式只有QPS模式(这才叫热点)。参数索引为@SentinelResource注解的方法参数下标,0代表第一个参数,1代表第二个参数。单机阈值以及统计窗口时长表示在此窗口时间超过阈值就限流。

第四步:多次访问热点参数方法,前端会出现如下界面,如图所示:

 然后,在后台出现如下异常表示限流成功。

com.alibaba.csp.sentinel.slots.block.flow.param.ParamFlowException: 2

其中,热点参数其实说白了就是特殊的流控,流控设置是针对整个请求的;但是热点参数他可以设置到具体哪个参数,甚至参数针对的值,这样更灵活的进行流控管理。
一般应用在某些特殊资源的特殊处理,如:某些商品流量大,其他商品流量很正常,就可以利用热点参数限流的方案。

特定参数设计

配置参数例外项,如图所示:

 这里表示参数值为5时阈值为100,其它参数值阈值为1,例如当我们访问http://ip:port/consumer/doRestEcho1?id=5时的限流阈值为100。

小节面试分析

  • 如何理解热点数据?(访问频度比较高的数据,某些商品、谋篇文章、某个视频)
  • 热点数据的限流规则是怎样的?(主要是针对参数进行限流设计)
  • 热点数据中的特殊参数如何理解?(热点限流中的某个参数值的阈值设计)
  • 对于热点数据的访问出现限流以后底层异常是什么?(ParamFlowException)

Sentinel系统规则(了解)





概述

系统在生产环境运行过程中,我们经常需要监控服务器的状态,看服务器CPU、内存、IO等的使用率;主要目的就是保证服务器正常的运行,不能被某些应用搞崩溃了;而且在保证稳定的前提下,保持系统的最大吞吐量。
长期以来,系统自适应保护的思路是根据硬指标,即系统的负载 (load1) 来做系统过载保护。当系统负载高于某个阈值,就禁止或者减少流量的进入;当 load 开始好转,则恢复流量的进入。
 

快速入门

Sentinel的系统保护规则是从应用级别的入口流量进行控制,从单台机器的总体 Load、RT、入口 QPS 、线程数和CPU使用率五个维度监控应用数据,让系统尽可能跑在最大吞吐量的同时保证系统整体的稳定性。如图所示:
在这里插入图片描述

 其中,

  • Load(仅对 Linux/Unix-like 机器生效):当系统 load1 超过阈值,且系统当前的并发线程数超过系统容量时才会触发系统保护。系统容量由系统的 maxQps * minRt 计算得出。设定参考值一般是 CPU cores * 2.5。
  • CPU使用率:当系统 CPU 使用率超过阈值即触发系统保护(取值范围 0.0-1.0)。
  • RT:当单台机器上所有入口流量的平均 RT 达到阈值即触发系统保护,单位是毫秒。
  • 线程数:当单台机器上所有入口流量的并发线程数达到阈值即触发系统保护。
  • 入口 QPS:当单台机器上所有入口流量的 QPS 达到阈值即触发系统保护。
    系统保护规则是应用整体维度的,而不是资源维度的,并且仅对入口流量生效。入口流量指的是进入应用的流量(EntryType.IN),比如 Web 服务。

小节面试分析

  • 如何理解sentinel中的系统规则?(是对所有链路的控制规则,是一种系统保护策略)
  • Sentinel的常用系统规则有哪些?(RT,QPS,CPU,线程,Load-linux,unix)
  • Sentinel系统保护规则被触发以后底层会抛出什么异常?(SystemBlockException)

Sentinel授权规则(重要)





概述

很多时候,我们需要根据调用方来限制资源是否通过,这时候可以使用 Sentinel 的黑白名单控制的功能。黑白名单根据资源的请求来源(origin)限制资源是否通过,若配置白名单则只有请求来源位于白名单内时才可通过;若配置黑名单则请求来源位于黑名单时不通过,其余的请求通过。例如微信中的黑名单。

快速入门

sentinel可以基于黑白名单方式进行授权规则设计,如图所示:

黑白名单规则(AuthorityRule)非常简单,主要有以下配置项:

  • 资源名:即限流规则的作用对象
  • 流控应用:对应的黑名单/白名单中设置的规则值,多个值用逗号隔开.
  • 授权类型:白名单,黑名单(不允许访问).

案例实现:

定义请求解析器,用于对请求进行解析,并返回解析结果,sentinel底层 在拦截到用户请求以后,会对请求数据基于此对象进行解析,判定是否符合黑白名单规则

第一步:定义RequestOriginParser接口的实现类,基于业务在接口方法中解析请求数据并返回.

@Component
public class DefaultRequestOriginParser implements RequestOriginParser {
    @Override
    public String parseOrigin(HttpServletRequest request) {
        String origin = request.getParameter("origin");
        return origin;
    }
}

第二步:定义流控规则,如图所示:

第三步:执行资源访问,检测授权规则应用,当我们配置的流控应用值为app1时,假如规则为黑名单,则基于
http://ip:port/path?origin=app1的请求不可以通过,会出现如下结果:

 第四步:设计过程分析,如图所示:

小节面试分析

  • 如何理解Sentinel中的授权规则?(对指定资源的访问给出的一种简易的授权策略)
  • Sentinel的授权规则是如何设计的?(白名单和黑名单)
  • 如何理解Sentinel中的白名单?(允许访问的资源名单)
  • 如何理解Sentinel中的黑名单?(不允许访问的资源名单)、
  • Sentinel如何识别白名单和黑名单?(在拦截器中通过调用RequestOriginParser对象的方法检测具体的规则)
  • 授权规则中RequestOriginParser类的做用是什么?(对流控应用值进行解析,检查服务访问时传入的值是否与RequestOriginParser的parseOrigin方法返回值是否相同。)

总结(Summary)

总之,Sentinel可为秒杀、抢购、抢票、拉票等高并发应用,提供API接口层面的流量限制,让突然暴涨而来的流量用户访问受到统一的管控,使用合理的流量放行规则使得用户都能正常得到服务。

重难点分析

  • Sentinel诞生的背景?(计算机的数量是否有限,处理能力是否有限,并发比较大或突发流量比较大)
  • 服务中Sentinel环境的集成,初始化?(添加依赖-两个,sentinel配置)
  • Sentinel 的限流规则?(阈值类型-QPS&线程数,限流模式-直接,关联,链路)
  • Sentinel 的降级(熔断)策略?(慢调用,异常比例,异常数)
  • Sentinel 的热点规则设计(掌握)?
  • Sentinel 系统规则设计?(了解,全局规则定义,针对所有请求有效)
  • Sentinel 授权规则设计?(掌握,黑白名单)

FAQ分析

  • 为什么要限流?
  • 你了解的那些限流框架?(sentinel)
  • 常用的限流算法有那些?(计数,令牌桶-电影票,漏桶-漏斗,滑动窗口)
  • Sentinel有哪些限流规则?(QPS,线程数)
  • Sentinel有哪些限流模式?(直接,关联-创建订单和查询订单,链路限流-北京六环外不限号,但是五环就限号)
  • Sentinel 的降级(熔断)策略有哪些?(慢调用-响应时长,异常比例-异常占比,异常数)
  • Sentinel 的热点规则中的热点数据?(热卖商品,微博大咖,新上映的电影)
  • 如何理解Sentinel 授权规则中的黑白名单?

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值