椭圆旋转方程

本文详细介绍了椭圆方程在不同坐标系下的变换过程,包括旋转变换和平移变换,并结合两者进行了综合变换,最终给出了椭圆方程在新坐标系下的表达式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

原椭圆方程是:x^2/a^2+y^2/b^2=1

先看 旋转变换 。 
有2个右手螺旋平面直角坐标系,UOV和XOY. 
2坐标系共原点O。
U0V的U轴的正向和X0Y的X轴正向之间的夹角为θ。
则,
若平面上一点P在XOY坐标系下的坐标为(X,Y),在UOV坐标系下的坐标为(U,V)。

则:
X = U*COS(θ) - V*SIN(θ)
Y = U*SIN(θ) + V*COS(θ)

U = X*COS(θ) + Y*SIN(θ)
V = X*SIN(θ) - Y*COS(θ)

这样,
一个在XOY中的标准的椭圆 X^2/A^2 + Y^2/B^2 = 1 在UOV中满足的方程就变成了
[U*COS(θ) - V*SIN(θ)]^2/A^2 +[U*SIN(θ) + V*COS(θ)]/B^2 = 1

-----------------
再看平移变换。

有2个右手螺旋平面直角坐标系,UO'V和XOY.
2坐标系的U,X坐标轴相互平行,V,Y坐标轴也相互平行。
UO'Y的原点O'在XOY中的坐标为(S,T)。

则,
若平面上一点P在XOY坐标系下的坐标为(X,Y),在UO'V坐标系下的坐标为(U,V)。

X = U + S
Y = V + T

U = X - S
V = Y - T

这样,
一个在XOY中的标准的椭圆 X^2/A^2 + Y^2/B^2 = 1 在UO'V中满足的方程就变成了
[U+S]^2/A^2 + [V+T]^2/B^2 = 1.

-----------
平移和旋转结合起来,

有2个右手螺旋平面直角坐标系,UO'V和XOY.
UO'Y的原点O'在XOY中的坐标为(S,T)。
U0'V的U轴的正向和X0Y的X轴正向之间的夹角为θ。

则,
若平面上一点P在XOY坐标系下的坐标为(X,Y),在UO'V坐标系下的坐标为(U,V)。

X = U*COS(θ) - V*SIN(θ) + S
Y = U*SIN(θ) + V*COS(θ) + T

U = (X-S)*COS(θ) + (Y-T)*SIN(θ)
V = (X-S)*SIN(θ) - (Y-T)*COS(θ)

这样,
一个在XOY中的标准的椭圆 X^2/A^2 + Y^2/B^2 = 1 在UO'V中满足的方程就变成了
[U*COS(θ) - V*SIN(θ) + S]^2/A^2 + [U*SIN(θ) + V*COS(θ) + T]/B^2 = 1

反之:
一个在UO‘V中的标准的椭圆 U^2/A^2 + V^2/B^2 = 1 在XOY中满足的方程就变成了(O'在XOY中坐标(S,T,)): 
[(X-S)*COS(θ) + (Y-T)*SIN(θ)]^2/A^2 + [(X-S)*SIN(θ) - (Y-T)*COS(θ)]/B^2 = 1
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值