LeetCode 1049. 最后一块石头的重量 II
问题转化为:把一堆石头分成两堆,求两堆石头重量差最小值 进一步分析:要让差值小,两堆石头的重量都要接近sum/2;我们假设两堆分别为A,B,A<sum/2,B>sum/2,若A更接近sum/2,B也相应更接近sum/2 进一步转化:将一堆stone放进最大容量为sum/2的背包,求放进去的石头的最大重量MaxWeight,最终答案即为sum-2*MaxWeight;、 0/1背包最值问题:外循环stones,内循环target=sum/2倒序,应用转移方程1
作者:星晴pro
链接:https://leetcode.cn/problems/last-stone-weight-ii/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
class Solution {
public:
int lastStoneWeightII(vector<int>& stones) {
int sum = accumulate(stones.begin(), stones.end(), 0);
int target = sum / 2;
vector<int> dp(target + 1, 0);
for(int i = 0; i < stones.size(); i++){
for(int j = target; j >= stones[i]; j--) {
dp[j] = max(dp[j], dp[j - stones[i]] + stones[i]);
}
}
return sum - 2 * dp[target];
}
};
LeetCode 494. 目标和
class Solution {
public:
int findTargetSumWays(vector<int>& nums, int target) {
int sum = accumulate(nums.begin(), nums.end(), 0);
if((sum + target) % 2 == 1 || sum < abs(target)){
return 0;
}
int big_size = (sum + target) / 2;
vector<int> dp(big_size + 1, 0);
dp[0] = 1;
for(int i = 0; i < nums.size(); i++){
for(int j = big_size; j >= nums[i]; j--){
dp[j] += dp[j - nums[i]];
}
}
return dp[big_size];
}
};
LeetCode 474. 一和零
本题也是0-1背包问题,但是“重量”有两个维度,一个是当前“物品”0的个数, 还有一个是1的个数。然后value是选择的物品个数
根据0-1背包滚动数组压缩,倒序遍历时, 状态转移方程为:dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
那么本题为滚动数组压缩后为一个二维数组, 两个维度都要倒序遍历,可推导状态转移方程:
dp[i] [j] = max(dp[i] [j],dp[i - zero_num] [j - one_num] + 1)
至此, dp完成
class Solution {
public:
int findMaxForm(vector<string>& strs, int m, int n) {
vector<vector<int>> dp(m + 1, vector<int>(n + 1, 0));
for(string& str : strs){
//遍历物品
int zero_num = 0, one_num = 0;
for(int i = 0; i < str.size(); i++){
if(str[i] == '0'){
zero_num++;
}else {
one_num++;
}
}
//遍历背包容量
for(int i = m; i >= zero_num; i--){
for(int j = n; j >= one_num; j--){
dp[i][j] = max(dp[i][j], dp[i - zero_num][j - one_num] + 1);
}
}
}
return dp[m][n];
}
};