Leetcode 518. 零钱兑换 II(中等) 动态规划

题目描述:

给定不同面额的硬币和一个总金额。写出函数来计算可以凑成总金额的硬币组合数。假设每一种面额的硬币有无限个。

示例 1:

输入: amount = 5, coins = [1, 2, 5]
输出: 4
解释: 有四种方式可以凑成总金额:
5=5
5=2+2+1
5=2+1+1+1
5=1+1+1+1+1

示例 2:

输入: amount = 3, coins = [2]
输出: 0
解释: 只用面额2的硬币不能凑成总金额3。

示例 3:

输入: amount = 10, coins = [10]
输出: 1

注意:

你可以假设:

    0 <= amount (总金额) <= 5000
    1 <= coin (硬币面额) <= 5000
    硬币种类不超过 500 种
    结果符合 32 位符号整数

来源:力扣(LeetCode)

思路:

这里的思路和爬楼梯(https://blog.csdn.net/Perrysky/article/details/105128600)的问题是一样的。但是我们用同样的思路写出代码,会发现输出值大于想要的。什么原因呢?爬楼梯我们计算的是排列数,即对于1,2 和 2,1 我们会算作两种情况。而我们需要的是组合数。但是根本原因是我们的子问题不同,我们应该以金额为参考。

思路这里需要后面学习背包问题后再做补充。

class Solution {
public:
    int change(int amount, vector<int>& coins) {
        vector<int> dp(amount+1, 0);
        dp[0] = 1;
        //dp[j]表示的是对于用前i个硬币能凑金额j的组合数
        for(int i=0; i<coins.size(); ++i)//枚举硬币
        {
            int coin = coins[i];
            for(int j=1; j<amount+1; ++j)//枚举金额
            {
                if(j < coin) continue;//coin不能大于amount
                dp[j] += dp[j-coin];
            }
        }
        return dp[amount];
    }
};

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值