题目描述:
给定不同面额的硬币和一个总金额。写出函数来计算可以凑成总金额的硬币组合数。假设每一种面额的硬币有无限个。
示例 1:
输入: amount = 5, coins = [1, 2, 5]
输出: 4
解释: 有四种方式可以凑成总金额:
5=5
5=2+2+1
5=2+1+1+1
5=1+1+1+1+1
示例 2:
输入: amount = 3, coins = [2]
输出: 0
解释: 只用面额2的硬币不能凑成总金额3。
示例 3:
输入: amount = 10, coins = [10]
输出: 1
注意:
你可以假设:
0 <= amount (总金额) <= 5000
1 <= coin (硬币面额) <= 5000
硬币种类不超过 500 种
结果符合 32 位符号整数
来源:力扣(LeetCode)
思路:
这里的思路和爬楼梯(https://blog.csdn.net/Perrysky/article/details/105128600)的问题是一样的。但是我们用同样的思路写出代码,会发现输出值大于想要的。什么原因呢?爬楼梯我们计算的是排列数,即对于1,2 和 2,1 我们会算作两种情况。而我们需要的是组合数。但是根本原因是我们的子问题不同,我们应该以金额为参考。
思路这里需要后面学习背包问题后再做补充。
class Solution {
public:
int change(int amount, vector<int>& coins) {
vector<int> dp(amount+1, 0);
dp[0] = 1;
//dp[j]表示的是对于用前i个硬币能凑金额j的组合数
for(int i=0; i<coins.size(); ++i)//枚举硬币
{
int coin = coins[i];
for(int j=1; j<amount+1; ++j)//枚举金额
{
if(j < coin) continue;//coin不能大于amount
dp[j] += dp[j-coin];
}
}
return dp[amount];
}
};