题目描述:
硬币。给定数量不限的硬币,币值为25分、10分、5分和1分,编写代码计算n分有几种表示法。(结果可能会很大,你需要将结果模上1000000007)
示例1:
输入: n = 5
输出:2
解释: 有两种方式可以凑成总金额:
5=5
5=1+1+1+1+1
示例2:
输入: n = 10
输出:4
解释: 有四种方式可以凑成总金额:
10=10
10=5+5
10=5+1+1+1+1+1
10=1+1+1+1+1+1+1+1+1+1
说明:
注意:
你可以假设:
0 <= n (总金额) <= 1000000
来源:力扣(LeetCode)
思路:完全背包问题
其中要注意的一点是: 我们的第一层循环是 根据不同的硬币种类来分的,如果内层循环用硬币的种类,我们会重复计算不同顺序的硬币情况,如 对于 10 = 5 + 1 + 1 + 1 + 1 + 1, 和 10 = 1 + 1 + 1 + 1 + 1 + 5 会被计算两次。而用不同的硬币来分类就可以排除这种情况。
int waysToChange(int n){
int mod = 1000000007;
int coins[] = {1,5,10,25};
int dp[1000001] = {0};
dp[0] = 1;//初始状态,可以这样理解,当 j-coin = 0 时,表示刚好能凑出来,算一种方式
for(int i=0; i<4; ++i)
{
int coin = coins[i];
for(int j=1; j<n+1; ++j){
if(j < coin) continue;//硬币的面值不能大于所要凑的金额
dp[j] = (dp[j] + dp[j-coin]) % mod;
}
}
return dp[n];
}