NLP 的发展历程
自然语言处理(NLP)是计算机科学与人工智能领域的一个重要分支,旨在让计算机能够理解、生成和处理人类语言。NLP的研究始于20世纪50年代,经历了多个发展阶段,随着计算能力的提高和算法的不断进步,NLP的应用场景也不断扩展和深入。下面是NLP发展的主要历程。
1. 早期阶段(1950s - 1960s)
1.1 语言学驱动
NLP的起步阶段主要依赖于语言学理论,并且早期的研究集中在规则和语法的设计上。在这个阶段,研究人员关注于如何将语法规则编写成计算机程序,以便计算机能够理解和生成自然语言。
- 机器翻译(MT):20世纪50年代末,机器翻译成为NLP的主要研究方向。1954年,IBM的研究人员成功实现了基于规则的机器翻译系统,将俄文翻译成英文。尽管翻译质量有限,但这一成果被认为是NLP的开端。
- 规则基础系统:在该时期,NLP主要基于规则,如句法分析和词汇对齐,使用基于规则的机器翻译(例如“符号主义”方法)。
1.2 主要挑战
- 语言歧义:自然语言充满了歧义,词语、句子在不同语境下有多种含义,早期的规则系统未能有效解决歧义问题。
- 计算能力限制:由于当时计算机的处理能力有限,系统处理复杂语言现象的能力非常有限。