【自动控制原理传递函数】


微分方程模型不便于分析结构或参数变化对系统性能的影响,所以我们便引入复数域的数学模型–传递函数。

传递函数定义

线性定常系统的传递函数,是零初始条件下系统输出 量的拉氏变换与系统输入量的拉氏变换之比。

条件

线性定常系统

零初始条件(1.系统的输入在t>0时才作用于系统。即在t=0时系统输 入及其各项导数均为零。 2.输入在加于系统之前,系统为稳态。即在t=0时输出及 其所有导数为零。)

传递函数的标准形式

在这里插入图片描述
n>=m

系统的特征多项式:分母多项式。
系统的特征方程:N(s)=0 
系统的极点(特征根): N(s)=0的根。 
系统的零点: M(s)=0的根。 
系统的阶次:分母多项式的阶次。 

零极点分布图

在复数平面上,用○表示零点,用╳表示极点。
在这里插入图片描述

传递函数与微分方程

将微分方程算符d/dt用复数s置换可 以得到传递函数。
在这里插入图片描述

性质

传递函数反映系统自身固有特性,与输入和初始条件无关。

不同的物理系统可能有相同的传递函数,而同一系统可以有不同的传递函数。

传递函数与单位脉冲响应之间是拉氏变换与拉氏反变换的关系。

例题

在这里插入图片描述

典型环节传递函数

比例环节

积分环节

惯性环节(非周期环节)

振荡环节

微分环节

理想微分环节(与积分环节对应)
一阶微分环节(与惯性环节对应)
二阶微分环节(与振荡环节对应)

延迟环节

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

奇异维度

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值