理论基础
什么是回溯法
回溯法也可以叫做回溯搜索法,它是一种搜索的方式。
在二叉树系列中,我们已经不止一次,提到了回溯,例如二叉树:以为使用了递归,其实还隐藏着回溯 (opens new window)。
回溯是递归的副产品,只要有递归就会有回溯。
所以以下讲解中,回溯函数也就是递归函数,指的都是一个函数。
回溯法的效率
虽然回溯法很难,很不好理解,但是回溯法并不是什么高效的算法。
因为回溯的本质是穷举,穷举所有可能,然后选出我们想要的答案,如果想让回溯法高效一些,可以加一些剪枝的操作,但也改不了回溯法就是穷举的本质。
那么既然回溯法并不高效为什么还要用它呢?
因为没得选,一些问题能暴力搜出来就不错了,撑死了再剪枝一下,还没有更高效的解法。
此时大家应该好奇了,都什么问题,这么牛逼,只能暴力搜索。
回溯法解决的问题
回溯法,一般可以解决如下几种问题:
组合问题:N个数里面按一定规则找出k个数的集合
切割问题:一个字符串按一定规则有几种切割方式
子集问题:一个N个数的集合里有多少符合条件的子集
排列问题:N个数按一定规则全排列,有几种排列方式
棋盘问题:N皇后,解数独等等
如何理解回溯法
回溯法解决的问题都可以抽象为树形结构,是的,我指的是所有回溯法的问题都可以抽象为树形结构!
因为回溯法解决的都是在集合中递归查找子集,集合的大小就构成了树的宽度,递归的深度就构成了树的深度。
递归就要有终止条件,所以必然是一棵高度有限的树(N叉树)。
如何理解回溯法
回溯法解决的问题都可以抽象为树形结构,是的,我指的是所有回溯法的问题都可以抽象为树形结构!
因为回溯法解决的都是在集合中递归查找子集,集合的大小就构成了树的宽度,递归的深度就构成了树的深度。
递归就要有终止条件,所以必然是一棵高度有限的树(N叉树)。
这块可能初学者还不太理解,后面的回溯算法解决的所有题目中,我都会强调这一点并画图举相应的例子,现在有一个印象就行。
回溯法模板
回溯函数遍历过程伪代码如下:
回溯算法模板框架如下:
void backtracking(参数) {
if (终止条件) {
存放结果;
return;
}
for (选择:本层集合中元素(树中节点孩子的数量就是集合的大小)) {
处理节点;
backtracking(路径,选择列表); // 递归
回溯,撤销处理结果
}
}
关于去重要考虑两点:是否需要排序,是否需要用数组记录元素被选取过的状态
组合
对于组合问题,什么时候需要startIndex呢?
如果是一个集合来求组合的话,就需要startIndex,例如:77.组合 ,216.组合总和III
如果是多个集合取组合,各个集合之间相互不影响,那么就不用startIndex
如果是排列问题,又是另一套分析的套路
求和问题中,排序之后加剪枝是常见的套路
组合
在这里要定义两个全局变量,一个用来存放符合条件单一结果,一个用来存放符合条件结果的集合。
其实不定义这两个全局变量也是可以的,把这两个变量放进递归函数的参数里,但函数里参数太多影响可读性,所以我定义全局变量了。
函数里一定有两个参数,既然是集合n里面取k个数,那么n和k是两个int型的参数。
然后还需要一个参数,为int型变量startIndex,这个参数用来记录本层递归的中,集合从哪里开始遍历(集合就是[1,…,n] )。
startIndex 就是防止出现重复的组合。
所以需要startIndex来记录下一层递归,搜索的起始位置。
path这个数组的大小如果达到k,说明我们找到了一个子集大小为k的组合了,在图中path存的就是根节点到叶子节点的路径。
此时用result二维数组,把path保存起来,并终止本层递归。
回溯法的搜索过程就是一个树型结构的遍历过程,for循环用来横向遍历,递归的过程是纵向遍历
如此我们才遍历完图中的这棵树。
for循环每次从startIndex开始遍历,然后用path保存取到的节点i。
可以看出backtracking(递归函数)通过不断调用自己一直往深处遍历,总会遇到叶子节点,遇到了叶子节点就要返回。
backtracking的下面部分就是回溯的操作了,撤销本次处理的结果。
class Solution {
public:
vector<vector<int>> result;
vector<int> path;
void backtracking(int n, int k, int startIndex) {
if (path.size() == k) {
result.push_back(path);
return;
}
for (int i = startIndex; i <= n; i++) {
path.push_back(i);
backtracking(n, k, i + 1);
path.pop_back();
}
}
vector<vector<int>> combine(int n, int k) {
result.clear();
path.clear();
backtracking(n,k,1);
return result;
}
};
剪枝操作
可以剪枝的地方就在递归中每一层的for循环所选择的起始位置。
如果for循环选择的起始位置之后的元素个数 已经不足 我们需要的元素个数了,那么就没有必要搜索了。
已经选择的元素个数:path.size();
所需需要的元素个数为: k - path.size();
列表中剩余元素(n-i) >= 所需需要的元素个数(k - path.size())
在集合n中至多要从该起始位置 : i <= n - (k - path.size()) + 1,开始遍历
为什么有个+1呢,因为包括起始位置,我们要是一个左闭的集合。
class Solution {
public:
vector<vector<int>> result;
vector<int> path;
void traverl(int n,int k,int index){
if(path.size()==k){
result.push_back(path);
return;
}
for(int i=index;i<=(n-(k-path.size())+1);i++){
path.push_back(i);
traverl(n,k,i+1);
path.pop_back();
}
}
vector<vector<int>> combine(int n, int k) {
result.clear();
path.clear();
traverl(n,k,1);
return result;
}
};
组合总和三
找出所有相加之和为 n 的 k 个数的组合。组合中只允许含有 1 - 9 的正整数,并且每种组合中不存在重复的数字。
说明:
所有数字都是正整数。
解集不能包含重复的组合。
class Solution {
public:
vector<vector<int>> result;
vector<int> path;
void traverl(int k,int n,int sum,int startIndex){
if(sum>n){
return;
}
if(path.size()==k){
if(sum==n){
result.push_back(path);
return;
}
}
for(int i=startIndex;i<=9-(k-path.size())+1;i++){
sum+=i;
path.push_back(i);
traverl(k,n,sum,i+1);
sum-=i;
path.pop_back();
}
}
vector<vector<int>> combinationSum3(int k, int n) {
traverl(k,n,0,1);
return result;
}
};
组合总和
因为本题没有组合数量要求,仅仅是总和的限制,所以递归没有层数的限制,只要选取的元素总和超过target,就返回!
终止只有两种情况,sum大于target和sum等于target。
对总集合排序之后,如果下一层的sum(就是本层的 sum + candidates[i])已经大于target,就可以结束本轮for循环的遍历。
class Solution {
public:
vector<vector<int>> result;
vector<int> path;
void backtracking(vector<int>& candidates, int target,int sum,int startIndex) {
if(sum>target){
return;
}
if(sum==target){
result.push_back(path);
return;
}
for(int i=startIndex;i<candidates.size()&&sum+candidates[i]<=target;i++){
sum+=candidates[i];
path.push_back(candidates[i]);
backtracking(candidates,target,sum,i);// 关键点:不用i+1了,表示可以重复读取当前的数
sum-=candidates[i];
path.pop_back();
}
}
vector<vector<int>> combinationSum(vector<int>& candidates, int target) {
result.clear();
path.clear();
sort(candidates.begin(), candidates.end()); // 需要排序
backtracking(candidates, target, 0, 0);
return result;
}
};
组合总和II
本题的难点在于:集合(数组candidates)有重复元素,但还不能有重复的组合。
要在搜索的过程中就去掉重复组合。
这个去重为什么很难理解呢,所谓去重,其实就是使用过的元素不能重复选取。 这么一说好像很简单!
都知道组合问题可以抽象为树形结构,那么“使用过”在这个树形结构上是有两个维度的,一个维度是同一树枝上使用过,一个维度是同一树层上使用过。
元素在同一个组合内是可以重复的,怎么重复都没事,但两个组合不能相同。
所以我们要去重的是同一树层上的“使用过”,同一树枝上的都是一个组合里的元素,不用去重。
看出在candidates[i] == candidates[i - 1]相同的情况下:
used[i - 1] == true,说明同一树枝candidates[i - 1]使用过
used[i - 1] == false,说明同一树层candidates[i - 1]使用过
同一树层,used[i - 1] == false 才能表示,当前取的 candidates[i] 是从 candidates[i - 1] 回溯而来的。
而 used[i - 1] == true,说明是进入下一层递归,去下一个数,所以是树枝上
class Solution {
public:
vector<vector<int>> result;
vector<int> path;
void backtracking(vector<int> &candidates, int target, int sum,
int startIndex, vector<bool>& used) {
if (sum == target) {
result.push_back(path);
return;
}
for (int i = startIndex;i < candidates.size()&&sum+candidates[i]<=target; i++) {
if (i>0&&candidates[i] == candidates[i - 1] &&
used[i - 1] == false) {
continue;
}
sum += candidates[i];
path.push_back(candidates[i]);
used[i] = true;
backtracking(candidates, target, sum, i + 1, used);
sum -= candidates[i];
used[i] = false;
path.pop_back();
}
}
vector<vector<int>> combinationSum2(vector<int>& candidates, int target) {
vector<bool> used(candidates.size(),false);
result.clear();
path.clear();
sort(candidates.begin(),candidates.end());
backtracking(candidates,target,0,0,used);
return result;
}
};
分割
分割回文串
其实切割问题类似组合问题
从树形结构的图中可以看出:切割线切到了字符串最后面,说明找到了一种切割方法,此时就是本层递归的终止条件。
在处理组合问题的时候,递归参数需要传入startIndex,表示下一轮递归遍历的起始位置,这个startIndex就是切割线。
在递归循环中如何截取子串呢?
在for (int i = startIndex; i < s.size(); i++)循环中,我们 定义了起始位置startIndex,那么 [startIndex, i] 就是要截取的子串。
首先判断这个子串是不是回文,如果是回文,就加入在vector path中,path用来记录切割过的回文子串。
切割过的位置,不能重复切割,所以,backtracking(s, i + 1); 传入下一层的起始位置为i + 1。
- 切割问题可以抽象为组合问题
- 如何模拟那些切割线
- 切割问题中递归如何终止
- 在递归循环中如何截取子串
- 如何判断回文
class Solution {
private:
vector<vector<string>> result;
vector<string> path; // 放已经回文的子串
void backtracking (const string& s, int startIndex) {
// 如果起始位置已经大于s的大小,说明已经找到了一组分割方案了
if (startIndex >= s.size()) {
result.push_back(path);
return;
}
for (int i = startIndex; i < s.size(); i++) {
if (isPalindrome(s, startIndex, i)) { // 是回文子串
// 获取[startIndex,i]在s中的子串
string str = s.substr(startIndex, i - startIndex + 1);
path.push_back(str);
} else { // 不是回文,跳过
continue;
}
backtracking(s, i + 1); // 寻找i+1为起始位置的子串
path.pop_back(); // 回溯过程,弹出本次已经添加的子串
}
}
bool isPalindrome(const string& s, int start, int end) {
for (int i = start, j = end; i < j; i++, j--) {
if (s[i] != s[j]) {
return false;
}
}
return true;
}
public:
vector<vector<string>> partition(string s) {
result.clear();
path.clear();
backtracking(s, 0);
return result;
}
};
复原IP地址
本题明确要求只会分成4段,所以不能用切割线切到最后作为终止条件,而是分割的段数作为终止条件。
pointNum表示逗点数量,pointNum为3说明字符串分成了4段了。
然后验证一下第四段是否合法,如果合法就加入到结果集里
在for (int i = startIndex; i < s.size(); i++)循环中 [startIndex, i] 这个区间就是截取的子串,需要判断这个子串是否合法。
如果合法就在字符串后面加上符号.表示已经分割。
如果不合法就结束本层循环
递归调用时,下一层递归的startIndex要从i+2开始(因为需要在字符串中加入了分隔符.),同时记录分割符的数量pointNum 要 +1。
回溯的时候,就将刚刚加入的分隔符. 删掉就可以了,pointNum也要-1。
class Solution {
public:
vector<string> result;
// 判断字符串s在左闭又闭区间[start, end]所组成的数字是否合法
bool isValid(const string& s,int start,int end){
if(start>end){
return false;
}
if(s[start]=='0'&&start!=end){// 0开头的数字不合法
return false;
}
int num=0;
for(int i=start;i<=end;i++){
if(s[i]>'9'||s[i]<'0'){// 遇到非数字字符不合法
return false;
}
num=num*10+(s[i]-'0');//是一个常见的技巧,用于将字符形式的数字转换为整数
if(num>255){// 如果大于255了不合法
return false;
}
}
return true;
}
void backtracking(string& s,int startIndex,int pointNum){
if(pointNum==3){
if(isValid(s,startIndex,s.size()-1)){
result.push_back(s);
}
return;
}
for(int i=startIndex;i<s.size();i++){
if(isValid(s,startIndex,i)){ 判断 [startIndex,i] 这个区间的子串是否合法
s.insert(s.begin()+i+1,'.'); 在i的后面插入一个逗点
pointNum++;
backtracking(s,i+2,pointNum); 插入逗点之后下一个子串的起始位置为i+2
pointNum--;
s.erase(s.begin()+i+1);// 回溯删掉逗点
}else{
// 不合法,直接结束本层循环
break;
}
}
}
vector<string> restoreIpAddresses(string s) {
int pointNum=0;
backtracking(s,0,0);
return result;
}
};
子集
子集
如果把 子集问题、组合问题、分割问题都抽象为一棵树的话,那么组合问题和分割问题都是收集树的叶子节点,而子集问题是找树的所有节点!
其实子集也是一种组合问题,因为它的集合是无序的,子集{1,2} 和 子集{2,1}是一样的。
那么既然是无序,取过的元素不会重复取,写回溯算法的时候,for就要从startIndex开始,而不是从0开始!
class Solution {
public:
vector<vector<int>> result;
vector<int> path;
void backtracking(vector<int>& nums,int startIndex){
result.push_back(path);// 收集子集,要放在终止添加的上面,否则会漏掉自己
if(startIndex>=nums.size()){
return;
}
for(int i=startIndex;i<nums.size();i++){
path.push_back(nums[i]);
backtracking(nums,i+1);
path.pop_back();
}
}
vector<vector<int>> subsets(vector<int>& nums) {
backtracking(nums,0);
return result;
}
};
子集II
同一树层上重复取2 就要过滤掉,同一树枝上就可以重复取2,因为同一树枝上元素的集合才是唯一子集!
class Solution {
public:
vector<vector<int>> result;
vector<int> path;
void traverl(vector<int>& nums,int startindex,vector<bool> used){
result.push_back(path);
for(int i=startindex;i<nums.size();i++){
if(i>0&&nums[i]==nums[i-1]&&used[i-1]==false){
continue;
}
path.push_back(nums[i]);
used[i]=true;
traverl(nums,i+1,used);
used[i]=false;
path.pop_back();
}
}
vector<vector<int>> subsetsWithDup(vector<int>& nums) {
result.clear();
path.clear();
vector<bool> used(nums.size(),false);
sort(nums.begin(),nums.end());
traverl(nums,0,used);
return result;
}
};
递增子序列
这个递增子序列比较像是取有序的子集。而且本题也要求不能有相同的递增子序列。
本题求自增子序列,是不能对原数组进行排序的,排完序的数组都是自增子序列了。
unordered_set uset; 是记录本层元素是否重复使用,新的一层uset都会重新定义(清空),所以要知道uset只负责本层!
class Solution {
public:
vector<vector<int>> result;
vector<int> path;
void traverl(vector<int>& nums,int startIndex){
if(path.size()>=2){
result.push_back(path);
}
unordered_set<int> uset;
for(int i=startIndex;i<nums.size();i++){
if((!path.empty()&&nums[i]<path.back())||uset.find(nums[i])!=uset.end()){
//如果当前值小于当前子集里面最右边的元素,或者在同一树层中已经取过,则砍掉当前层
continue;
}
uset.insert(nums[i]);
path.push_back(nums[i]);
traverl(nums,i+1);
path.pop_back();
}
}
vector<vector<int>> findSubsequences(vector<int>& nums) {
traverl(nums,0);
return result;
}
};
排列
全排列
首先排列是有序的,也就是说 [1,2] 和 [2,1] 是两个集合,这和之前分析的子集以及组合所不同的地方。
当收集元素的数组path的大小达到和nums数组一样大的时候,说明找到了一个全排列,也表示到达了叶子节点。
和组合问题切割问题和子集问题最大的不同就是for循环里不用startIndex了。
因为排列问题,每次都要从头开始搜索,例如元素1在[1,2]中已经使用过了,但是在[2,1]中还要再使用一次1。
而used数组,其实就是记录此时path里都有哪些元素使用了,一个排列里一个元素只能使用一次。
每层都是从0开始搜索而不是startIndex
需要used数组记录path里都放了哪些元素了
class Solution {
public:
vector<vector<int>> result;
vector<int> path;
void traverl(vector<int>& nums,vector<bool>& used){
if(path.size()==nums.size()){
result.push_back(path);
return;
}
for(int i=0;i<nums.size();i++){
if(used[i]==true){
continue;
}
path.push_back(nums[i]);
used[i]=true;
traverl(nums,used);
path.pop_back();
used[i]=false;
}
}
vector<vector<int>> permute(vector<int>& nums) {
vector<bool> used(nums.size(),false);
traverl(nums,used);
return result;
}
};
全排列 II
去重一定要对元素进行排序,这样我们才方便通过相邻的节点来判断是否重复使用了。
一般来说:组合问题和排列问题是在树形结构的叶子节点上收集结果,而子集问题就是取树上所有节点的结果。
class Solution {
public:
vector<vector<int>> result;
vector<int> path;
void backtracking(vector<int>& nums,vector<bool>& used){
if(path.size()==nums.size()){
result.push_back(path);
return;
}
for(int i=0;i<nums.size();i++){
if(i>0&&nums[i]==nums[i-1]&&used[i-1]==false){
continue;
}
if(used[i]==false){
used[i]=true;
path.push_back(nums[i]);
backtracking(nums,used);
path.pop_back();
used[i]=false;
}
}
}
vector<vector<int>> permuteUnique(vector<int>& nums) {
result.clear();
sort(nums.begin(),nums.end());
vector<bool> used(nums.size(),false);
backtracking(nums,used);
return result;
}
};
棋盘问题
N皇后
n皇后问题是回溯算法解决的经典问题,但是用回溯解决多了组合、切割、子集、排列问题之后,遇到这种二维矩阵还会有点不知所措。
首先来看一下皇后们的约束条件:
不能同行
不能同列
不能同斜线
bool isValid(int row,int col,vector<string>& chessboard,int n){
// 检查列
for(int i=0;i<row;i++){
if(chessboard[i][col]=='Q'){
return false;
}
}
//检查 45度角是否有皇后
for(int i=row-1,j=col-1;i>=0&&j>=0;i--,j--){
if(chessboard[i][j]=='Q'){
return false;
}
}
// 检查 135度角是否有皇后
for(int i=row-1,j=col+1;i>=0&&j<n;i--,j++){
if(chessboard[i][j]=='Q'){
return false;
}
}
return true;
}
二维矩阵中矩阵的高就是这棵树的高度,矩阵的宽就是树形结构中每一个节点的宽度。
那么我们用皇后们的约束条件,来回溯搜索这棵树,只要搜索到了树的叶子节点,说明就找到了皇后们的合理位置了。
递归深度就是row控制棋盘的行,每一层里for循环的col控制棋盘的列,一行一列,确定了放置皇后的位置。
每次都是要从新的一行的起始位置开始搜,所以都是从0开始。
class Solution {
public:
vector<vector<string>> result;
void backtracking(int n, int row, vector<string>& chessboard) {
if (row == n) {
result.push_back(chessboard);
return;
}
for (int col = 0; col < n; col++) {
if (isValid(row, col, chessboard, n)) {
chessboard[row][col]='Q';
backtracking(n, row + 1,chessboard);
chessboard[row][col]='.';
}
}
}
bool isValid(int row,int col,vector<string>& chessboard,int n){
// 检查列
for(int i=0;i<row;i++){
if(chessboard[i][col]=='Q'){
return false;
}
}
//检查 45度角是否有皇后
for(int i=row-1,j=col-1;i>=0&&j>=0;i--,j--){
if(chessboard[i][j]=='Q'){
return false;
}
}
// 检查 135度角是否有皇后
for(int i=row-1,j=col+1;i>=0&&j<n;i--,j++){
if(chessboard[i][j]=='Q'){
return false;
}
}
return true;
}
vector<vector<string>> solveNQueens(int n) {
vector<string> chessboard(n,string(n,'.'));
backtracking(n,0,chessboard);
return result;
}
};
解数独
棋盘搜索问题可以使用回溯法暴力搜索,只不过这次我们要做的是二维递归。
N皇后问题是因为每一行每一列只放一个皇后,只需要一层for循环遍历一行,递归来遍历列,然后一行一列确定皇后的唯一位置。
本题就不一样了,本题中棋盘的每一个位置都要放一个数字(而N皇后是一行只放一个皇后),并检查数字是否合法,解数独的树形结构要比N皇后更宽更深。