Reservoir sampling

There are 2 kinds of questions that involves with this algorithm, the first one is to randomly pick 1 number from a considerable large stream, the second one is to pick k elements from the stream, both of which require that the probability of picking number is equal. Here is the proof:

Time Complexity: O(n)

How does this work?
To prove that this solution works perfectly, we must prove that the probability that any item stream[i] where 0 <= i < n will be in final reservoir[] is k/n. Let us divide the proof in two cases as first k items are treated differently.

Case 1: For last n-k stream items, i.e., for stream[i] where k <= i < n
For every such stream item stream[i], we pick a random index from 0 to i and if the picked index is one of the first k indexes, we replace the element at picked index with stream[i]

To simplify the proof, let us first consider the last item. The probability that the last item is in final reservoir = The probability that one of the first k indexes is picked for last item = k/n (the probability of picking one of the k items from a list of size n)

Let us now consider the second last item. The probability that the second last item is in final reservoir[] = [Probability that one of the first k indexes is picked in iteration for stream[n-2]] X [Probability that the index picked in iteration for stream[n-1] is not same as index picked for stream[n-2] ] = [k/(n-1)]*[(n-1)/n] = k/n.

Similarly, we can consider other items for all stream items from stream[n-1] to stream[k] and generalize the proof.

Case 2: For first k stream items, i.e., for stream[i] where 0 <= i < k
The first k items are initially copied to reservoir[] and may be removed later in iterations for stream[k] to stream[n].
The probability that an item from stream[0..k-1] is in final array = Probability that the item is not picked when items stream[k], stream[k+1], …. stream[n-1] are considered = [k/(k+1)] x [(k+1)/(k+2)] x [(k+2)/(k+3)] x … x [(n-1)/n] = k/n

// A function to randomly select k items from stream[0..n-1].
void selectKItems(int stream[], int n, int k)
{
    int i;  // index for elements in stream[]

    // reservoir[] is the output array. Initialize it with
    // first k elements from stream[]
    int reservoir[k];
    for (i = 0; i < k; i++)
        reservoir[i] = stream[i];

    // Use a different seed value so that we don't get
    // same result each time we run this program
    srand(time(NULL));

    // Iterate from the (k+1)th element to nth element
    for (; i < n; i++)
    {
        // Pick a random index from 0 to i.
        int j = rand() % (i+1);

        // If the randomly  picked index is smaller than k, then replace
        // the element present at the index with new element from stream
        if (j < k)
          reservoir[j] = stream[i];
    }
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值