Kalman Filter的推导与应用(一)

最近利用卡尔曼滤波来做tracking的东西,然后随手推导了一下。网上大都是只有例子源代码和约定俗成的公式,不太方便使用,毕竟不能保证你遇到的问题恰好能用现有模型来套。所以对滤波器的来由需要深刻地理解一下。

(一)Kalman Filter原理

定义1.1

m×1 维随机向量 yRm 的线性函数估计 n×1 维随机变量 xRn ,估计值记为

x^=b+Ay,bRn,ARn×m
若估计值极小化的指标函数为
J=E[(xx^)T(xx^)]
则称 x^ 为随机变量的线性最小方差估计。由观测值 y 求随机变量 x 的线性最小方差估计的表达式为
x^=E(x)+Cov(x,y)Var(y)1(yE(y))
虽然这个公式好像好难懂,不过暂时不需要完全理解它,后面在推导时可以慢慢领会。同时这个 x^ 有三个性质

(1)无偏性, E(x^)=E(x)

(2)正交性, E[(xx^)yT]=0

(3)不相关性, xx^ y 不相关

定义1.2

xx^ y 不相关,那么等价于 xx^ y 正交(或者理解为垂直),记为 xx^y ,并且称 x^ x y 上 的射影,记为 x^=projx|y

定义1.3

基于随机变量 y(1),y(2),...,y(k)Rm ,对随机变量 xRm 的线性最小方差估计 x^ 定义为

x^=proj(x|w)=proj(x|y(1),y(2),...,y(k))
也称 x^ x 在线性流型 L(w) L(y(1),y(2),...,y(k)) 上的射影。流型的概念不需要理解,因为后面推导不涉及对它的完全理解

定义1.4

y(1),y(2),...,y(k)Rm 是存在二阶矩的随机序列,它的新息序列(不用纠结名字,其实后面推导里它就是误差序列)定义为

ϵ(k)=y(k)proj(y(k)|y(1),y(2),...,y(k1)),k=1,2,...
并定义的一步最优预报估计值为
y^(k|k1)=proj(y(k)|y(1),y(2),...,y(k1))
因此新息序列可重新写成
ϵ(k)=y(k)y^(k|k1),k=1,2,...
需要规定 y^(1|0)=E[y(1)] ,这保证了 E[ϵ(1)]=0 ,所以有 ϵ(k)L(y(1),y(2),...,y(k1))

定义1.5

设随机变量 xRn ,随机序列 y(k)Rm ,而且随机序列存在二阶矩,则有递推公式(证明以后再补好了(-。-;))

proj(x|y(1),y(2),...,y(k))=proj(x|y(1),y(2),...,y(k1))+E[xϵT(k)]E[ϵ(k)ϵT(k)]1ϵ(k)

卡尔曼波是一种用于通过融合多个传感器测量数据来估计物体状态的优化算法。它在估计中考虑了系统的动态模型以及传感器的测量噪声,能够在噪声和不确定性环境下提供最优的状态估计。 卡尔曼波的原理可以通过以下步骤进行推导: 1. 假设系统是线性的,可以用以下状态方程描述:x(k)=Ax(k-1)+Bu(k)+w(k),其中x(k)是状态向量,A是状态转移矩阵,B是输入控制矩阵,u(k)是控制向量,w(k)是系统过程噪声。 2. 假设测量数据是线性的,可以用以下观测方程描述:z(k)=Hx(k)+v(k),其中z(k)是观测向量,H是观测矩阵,v(k)是测量噪声。 3. 假设状态和测量噪声都是高斯分布,即w(k)~N(0,Q),v(k)~N(0,R),其中Q是系统过程噪声协方差矩阵,R是测量噪声协方差矩阵。 4. 初始化卡尔曼波器的状态估计值和协方差矩阵。 5. 递归执行以下步骤: a. 预测步骤:根据当前状态估计值和模型方程,计算预测状态和预测协方差矩阵。即x^- = Ax+Bu,P^- = APA^T + Q。 b. 更新步骤:根据测量值和观测方程,计算卡尔曼增益、估计当前状态和协方差矩阵。即K = P^-HT(HP^-HT + R)^-1,x = x^- + K(z - Hx^-),P = (I - KH)P^-。 6. 返回估计的状态。 卡尔曼波是通过不断更新状态估计值和协方差矩阵来提供最优状态估计的。预测步骤利用系统的动态模型来预测下一个状态,更新步骤则将预测值和测量值进行融合,根据测量值的准确性来修正预测值。通过迭代执行预测和更新步骤,卡尔曼波能够提供最优的状态估计值。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值