已解决】亲测!!安装相应版本的torch-geometric

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档


一、查看当前的cuda版本和pytorch版本

没有安装的可以查看anaconda+cuda+pytorch安装
在终端中输入:conda list

conda list

 
 
  • 1

在这里插入图片描述
在这里插入图片描述

非常直观且快速的查到自己的cuda版本和当前安装的torch版本

二、安装torch-geometric

查看torch-geometric安装网站
官方网站
在这里插入图片描述
救命!我瞎了眼没看它支持python3.8到3.11的,我的python是3.7,安装后跑程序疯狂报错!大家注意啊!!!

我个人觉得下载安装包进行安装时最方便快速,不容易出错的,下边介绍的也是这种方法
torch-geometric依赖的安装包下载
在https://pytorch-geometric.com/whl/index.html中,根据自己的torch版本去下载。下载地址
在这里插入图片描述

进入后我们可以看到.torch-geometric的安装和其他四个库相关(torch-cluster、pytorch-scatter、torch-sparse、pytorch-spline-conv)
依次下载这四个库的安装文件
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
下载好的内容
在这里插入图片描述
下面进行安装
注意!!!!!,在安装的时候一定要注意把外网关了,如果你开着的话,这个问题让我按了一整天!!!!大家避雷!!
这四个的安装步骤都是一样的,复制文件地址+终端安装
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
安装好后,安装torch-geometric

pip install torch-geometric -i https://pypi.tuna.tsinghua.edu.cn/simple/ --trusted-host pypi.tuna.tsinghua.edu.cn

 
 
  • 1

在这里插入图片描述
在这里插入图片描述
测试是否安装成功
在这里插入图片描述
不报错即成功!
到此torch-geometric安装完成!!

### 安装 `torch-geometric` 库 为了成功安装 `torch-geometric` 库并确保其正常工作,建议按照特定顺序来安装所需的依赖包。以下是详细的安装指南: #### 1. 确认 PyTorch 版本与 CUDA 配置 在开始之前,确认已正确安装所需版本的 PyTorch 并配置好相应的 CUDA 版本。例如,如果使用的是 Python 3.x 和 CUDA 11.1,则应先通过如下命令安装合适的 PyTorch 版本: ```bash pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu111 ``` #### 2. 安装必要的扩展包 接着,依次安装四个主要的支持库 (`torch-scatter`, `torch-sparse`, `torch-cluster`, `torch-spline-conv`),这些库提供了图神经网络操作的基础功能。对于 PyTorch 1.8.0 + cu111 组合来说,具体命令如下所示[^1]: ```bash pip install torch-scatter==2.0.8 -f https://pytorch-geometric.com/whl/torch-1.8.0+cu111.html pip install torch-sparse==0.6.9 -f https://pytorch-geometric.com/whl/torch-1.8.0+cu111.html pip install torch-cluster==1.5.9 -f https://pytorch-geometric.com/whl/torch-1.8.0+cu111.html pip install torch-spline-conv==1.2.1 -f https://pytorch-geometric.com/whl/torch-1.8.0+cu111.html ``` #### 3. 安装 `torch-geometric` 当所有前置条件满足后,可以通过下面的方式安装目标版本的 `torch-geometric`[^3]: ```bash pip install torch-geometric==2.0.1 -f https://data.pyg.org/whl/torch-1.9.0+cu111.html ``` 注意,在某些情况下,如果不指定 `-f` 参数后面的 URL 或者不精确匹配 PyTorch/CUDA 版本组合,可能会遇到兼容性问题。 #### 4. 验证安装 完成以上步骤后,可以在 Python 中导入模块以验证是否安装成功: ```python import torch_geometric print(torch_geometric.__version__) ```
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值