这是论文上的一道题目,上面有详细的证明。大于等于转化为大于可以用减标号的方法,即a[i]=a[i]-i.
其实我就是用来练习一下左偏树。。
#include<bits/stdc++.h>
#define ll long long
#define N 1000005
using namespace std;
int n,tot,sum;
int a[N],root[N],l[N],r[N],L[N],R[N],v[N],cnt[N],d[N],num[N];
ll ans;
inline int read()
{
int a=0,f=1; char c=getchar();
while (c<'0'||c>'9') {if (c=='-') f=-1; c=getchar();}
while (c>='0'&&c<='9') {a=a*10+c-'0'; c=getchar();}
return a*f;
}
inline int new_heap(int x)
{
v[++sum]=x; cnt[sum]=1;
l[sum]=r[sum]=d[sum]=0;
return sum;
}
int merge(int x,int y)
{
if (!x||!y) return x+y;
if (v[x]<v[y]) swap(x,y);
r[x]=merge(r[x],y);
cnt[x]=cnt[l[x]]+cnt[r[x]]+1;
if (d[l[x]]<d[r[x]]) swap(l[x],r[x]);
d[x]=d[r[x]]+1;
return x;
}
inline int top(int x)
{
return v[x];
}
inline int pop(int &x)
{
x=merge(l[x],r[x]);
}
int main()
{
n=read();
for (int i=1;i<=n;i++) a[i]=read()-i;
for (int i=1;i<=n;i++)
{
++tot;
root[tot]=new_heap(a[i]);
num[tot]=1;
L[tot]=i; R[tot]=i;
while (tot>1&&top(root[tot])<top(root[tot-1]))
{
--tot;
root[tot]=merge(root[tot],root[tot+1]);
num[tot]+=num[tot+1];
R[tot]=R[tot+1];
while (cnt[root[tot]]*2>num[tot]+1) pop(root[tot]);
}
}
for (int i=1;i<=tot;i++)
for (int j=L[i],t=top(root[i]);j<=R[i];j++)
ans+=abs(a[j]-t);
cout << ans;
return 0;
}