题意
给出n个数a[1..n],要求求n个数b[1..n],满足b是严格递增且
∑abs(a[i]−b[i])
最小。
n<=1000000
分析
这题好劲啊!!!看了好久题解才看懂。
可以参考黄源河dalao的论文左偏树特点及其应用
一看题的时候没什么思路,但我们可以按照从一般到特殊的思想去思考这道题。
若a[1]<=a[2]<=…<=a[n],那么b[i]=a[i]则一定是最优答案。
若a[1]>=a[2]>=…>=a[n],那么b[1]=b[2]=…=b[n]=a[n/2+1]也就是中位数一定是最优答案。
那么我们可以考虑把整个序列分成m段,每段的最优解都是其中位数,那么我们只要保证这m段的中位数单调递增即可。
那么假设现在处理到第i个数,我们把a[i]设为单独的一段,那么这一段的答案就是a[i],如果a[i] < w[m-1]则把第m段和第m-1段合并即可。
维护中位数的方法是:用左偏树(大根堆)维护这一段的值,如果左偏树的节点数大于区间长度/2则删除树顶元素。
但如果这样做的话会导致b单调不下降,但我们需要b单调递增,那么我们可以一开始把每个a[i]减去i(我也不造为什么)
代码
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#define ll long long
#define N 1000005
using namespace std;
int a[N],n;
struct data{int root,size,l,r;}w[N];
struct tree{int dis,key,l,r;}t[N];
int merge(int x,int y)
{
if (!x) return y;
if (!y) return x;
if (t[x].key<t[y].key) swap(x,y);
t[x].r=merge(t[x].r,y);
if (t[t[x].l].dis<t[t[x].r].dis) swap(t[x].l,t[x].r);
t[x].dis=t[t[x].r].dis+1;
return x;
}
int pop(int x)
{
return merge(t[x].l,t[x].r);
}
int main()
{
scanf("%d",&n);
for (int i=1;i<=n;i++)
{
scanf("%d",&a[i]);
a[i]-=i;
}
int m=1;
t[0].dis=-1;
w[1].root=1;w[1].size=1;w[1].l=w[1].r=1;
t[1].dis=0;t[1].key=a[1];
for (int i=2;i<=n;i++)
{
m++;
w[m].root=i;w[m].size=1;w[m].l=w[m].r=i;
t[i].dis=0;t[i].key=a[i];
while (m>1&&t[w[m].root].key<t[w[m-1].root].key)
{
w[m-1].size+=w[m].size;
w[m-1].r=w[m].r;
w[m-1].root=merge(w[m-1].root,w[m].root);
m--;
while (w[m].size>(w[m].r-w[m].l+2)/2)
{
w[m].root=pop(w[m].root);
w[m].size--;
}
}
}
/*for (int i=1;i<=m;i++)
printf("%d %d %d\n",t[w[i].root].key,w[i].l,w[i].r);*/
ll ans=0;
for (int i=1;i<=m;i++)
for (int j=w[i].l;j<=w[i].r;j++)
ans+=abs(t[w[i].root].key-a[j]);
printf("%lld",ans);
return 0;
}