bzoj 1367: [Baltic2004]sequence 左偏树+贪心

题意

给出n个数a[1..n],要求求n个数b[1..n],满足b是严格递增且 abs(a[i]b[i]) 最小。
n<=1000000

分析

这题好劲啊!!!看了好久题解才看懂。

可以参考黄源河dalao的论文左偏树特点及其应用

一看题的时候没什么思路,但我们可以按照从一般到特殊的思想去思考这道题。
若a[1]<=a[2]<=…<=a[n],那么b[i]=a[i]则一定是最优答案。
若a[1]>=a[2]>=…>=a[n],那么b[1]=b[2]=…=b[n]=a[n/2+1]也就是中位数一定是最优答案。
那么我们可以考虑把整个序列分成m段,每段的最优解都是其中位数,那么我们只要保证这m段的中位数单调递增即可。
那么假设现在处理到第i个数,我们把a[i]设为单独的一段,那么这一段的答案就是a[i],如果a[i] < w[m-1]则把第m段和第m-1段合并即可。
维护中位数的方法是:用左偏树(大根堆)维护这一段的值,如果左偏树的节点数大于区间长度/2则删除树顶元素。
但如果这样做的话会导致b单调不下降,但我们需要b单调递增,那么我们可以一开始把每个a[i]减去i(我也不造为什么)

代码

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#define ll long long
#define N 1000005
using namespace std;

int a[N],n;
struct data{int root,size,l,r;}w[N];
struct tree{int dis,key,l,r;}t[N];

int merge(int x,int y)
{
    if (!x) return y;
    if (!y) return x;
    if (t[x].key<t[y].key) swap(x,y);
    t[x].r=merge(t[x].r,y);
    if (t[t[x].l].dis<t[t[x].r].dis) swap(t[x].l,t[x].r);
    t[x].dis=t[t[x].r].dis+1;
    return x;
}

int pop(int x)
{
    return merge(t[x].l,t[x].r);
}

int main()
{
    scanf("%d",&n);
    for (int i=1;i<=n;i++)
    {
        scanf("%d",&a[i]);
        a[i]-=i;
    }
    int m=1;
    t[0].dis=-1;
    w[1].root=1;w[1].size=1;w[1].l=w[1].r=1;
    t[1].dis=0;t[1].key=a[1];
    for (int i=2;i<=n;i++)
    {
        m++;
        w[m].root=i;w[m].size=1;w[m].l=w[m].r=i;
        t[i].dis=0;t[i].key=a[i];
        while (m>1&&t[w[m].root].key<t[w[m-1].root].key)
        {
            w[m-1].size+=w[m].size;
            w[m-1].r=w[m].r;
            w[m-1].root=merge(w[m-1].root,w[m].root);
            m--;
            while (w[m].size>(w[m].r-w[m].l+2)/2)
            {
                w[m].root=pop(w[m].root);
                w[m].size--;
            }
        }
    }
    /*for (int i=1;i<=m;i++)
        printf("%d %d %d\n",t[w[i].root].key,w[i].l,w[i].r);*/
    ll ans=0;
    for (int i=1;i<=m;i++)
        for (int j=w[i].l;j<=w[i].r;j++)
            ans+=abs(t[w[i].root].key-a[j]);
    printf("%lld",ans);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值