2595: [Wc2008]游览计划 斯坦纳树

传说中的斯坦纳树。。qwq

f[st][i]表示连通性至少为st,且经过i点的最小距离
方程1.f[st][i] = Min{f[s][i] + f[st - s][i]}(s为st的子集)
方程2.f[st][i] = Min{f[st][j] + w(i,j)}(i,j之间有边相连)

第一步枚举实现,第二步spfa实现。
也就是先枚举连通的状态,对于每个状态先对每个位置枚举子集进行合并,然后对这个状态的分层图进行SPFA。

#include<iostream>
#include<cstdio>
#define inf 1000000007
#define M 1000005
using namespace std;
int a[12][12];
int n,m,t,w,sum;
int f[12][12][1024];
struct node {int f,s,t;} pre[12][12][1024];
int dx[4]={-1,0,1,0};
int dy[4]={0,-1,0,1};
bool v[12][12],vis[12][12];
int q[1000005][2];
inline int read()
{
    int a=0,f=1; char c=getchar();
    while (c<'0'||c>'9') {if (c=='-') f=-1; c=getchar();}
    while (c>='0'&&c<='9') {a=a*10+c-'0'; c=getchar();}
    return a*f;
}
inline void spfa(int sta) //方程2
{
    int x,y;
    while (t!=w)
    {
        t=(t+1)%M;
        x=q[t][0],y=q[t][1];
        for (int k=0;k<4;k++)
        {
            int nx=x+dx[k],ny=y+dy[k];
            if (x<1||y<1||x>n||y>m) continue;
            if (f[nx][ny][sta]>f[x][y][sta]+a[nx][ny])
            {
                f[nx][ny][sta]=f[x][y][sta]+a[nx][ny];
                pre[nx][ny][sta]=(node){x,y,sta};
                if (!v[nx][ny])
                {
                    w=(w+1)%M;
                    q[w][0]=nx; q[w][1]=ny;
                    v[nx][ny]=1;
                }
            }
        }
        v[x][y]=0;
    }
}
void dfs(int x,int y,int sta)
{
    if (x>inf||pre[x][y][sta].t==0) return;
    vis[x][y]=1;
    node t=pre[x][y][sta];
    dfs(t.f,t.s,t.t);
    if (t.f==x&&t.s==y) dfs(x,y,sta-t.t);
}
int main()
{
    n=read(); m=read();
    for (int i=1;i<=n;i++)
        for (int j=1;j<=m;j++)
        {
            a[i][j]=read();
            if (!a[i][j]) sum++;
        }
    for (int i=1;i<=n;i++)
        for (int j=1;j<=m;j++)
            for (int k=0;k<1<<sum;k++)
                f[i][j][k]=pre[i][j][k].f=inf;
    sum=0; t=0; w=1;
    for (int i=1;i<=n;i++)
        for (int j=1;j<=m;j++)
            if (!a[i][j])
                f[i][j][(1<<sum)]=0,sum++;
    for (int sta=1;sta<1<<sum;sta++)
    {
        for (int i=1;i<=n;i++)
            for (int j=1;j<=m;j++)
            {
                for (int s=sta&(sta-1);s;s=sta&(s-1))
                {
                    int t=f[i][j][s]+f[i][j][sta-s]-a[i][j];
                    if (t<f[i][j][sta])
                    {
                        f[i][j][sta]=t;
                        pre[i][j][sta]=(node){i,j,s};
                    }
                }  //方程1
                if (f[i][j][sta]<inf)
                    w=(w+1)%M,q[w][0]=i,q[w][1]=j,v[i][j]=1;
            }
        spfa(sta);
    }
    bool flag=0;
    for (int i=1;i<=n;i++)
    {
        for (int j=1;j<=m;j++)
            if (!a[i][j])
            {
                dfs(i,j,(1<<sum)-1); 
                printf("%d\n",f[i][j][(1<<sum)-1]);
                flag=1; break;
            }
        if (flag) break;
    }
    for (int i=1;i<=n;i++)
    {
        for (int j=1;j<=m;j++)
        {
            if (!a[i][j]) putchar('x');
            else if (vis[i][j]) putchar('o');
            else putchar('_');
        }
        puts("");
    }
    return 0;
}   
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值