传说中的斯坦纳树。。qwq
f[st][i]表示连通性至少为st,且经过i点的最小距离
方程1.f[st][i] = Min{f[s][i] + f[st - s][i]}(s为st的子集)
方程2.f[st][i] = Min{f[st][j] + w(i,j)}(i,j之间有边相连)
第一步枚举实现,第二步spfa实现。
也就是先枚举连通的状态,对于每个状态先对每个位置枚举子集进行合并,然后对这个状态的分层图进行SPFA。
#include<iostream>
#include<cstdio>
#define inf 1000000007
#define M 1000005
using namespace std;
int a[12][12];
int n,m,t,w,sum;
int f[12][12][1024];
struct node {int f,s,t;} pre[12][12][1024];
int dx[4]={-1,0,1,0};
int dy[4]={0,-1,0,1};
bool v[12][12],vis[12][12];
int q[1000005][2];
inline int read()
{
int a=0,f=1; char c=getchar();
while (c<'0'||c>'9') {if (c=='-') f=-1; c=getchar();}
while (c>='0'&&c<='9') {a=a*10+c-'0'; c=getchar();}
return a*f;
}
inline void spfa(int sta) //方程2
{
int x,y;
while (t!=w)
{
t=(t+1)%M;
x=q[t][0],y=q[t][1];
for (int k=0;k<4;k++)
{
int nx=x+dx[k],ny=y+dy[k];
if (x<1||y<1||x>n||y>m) continue;
if (f[nx][ny][sta]>f[x][y][sta]+a[nx][ny])
{
f[nx][ny][sta]=f[x][y][sta]+a[nx][ny];
pre[nx][ny][sta]=(node){x,y,sta};
if (!v[nx][ny])
{
w=(w+1)%M;
q[w][0]=nx; q[w][1]=ny;
v[nx][ny]=1;
}
}
}
v[x][y]=0;
}
}
void dfs(int x,int y,int sta)
{
if (x>inf||pre[x][y][sta].t==0) return;
vis[x][y]=1;
node t=pre[x][y][sta];
dfs(t.f,t.s,t.t);
if (t.f==x&&t.s==y) dfs(x,y,sta-t.t);
}
int main()
{
n=read(); m=read();
for (int i=1;i<=n;i++)
for (int j=1;j<=m;j++)
{
a[i][j]=read();
if (!a[i][j]) sum++;
}
for (int i=1;i<=n;i++)
for (int j=1;j<=m;j++)
for (int k=0;k<1<<sum;k++)
f[i][j][k]=pre[i][j][k].f=inf;
sum=0; t=0; w=1;
for (int i=1;i<=n;i++)
for (int j=1;j<=m;j++)
if (!a[i][j])
f[i][j][(1<<sum)]=0,sum++;
for (int sta=1;sta<1<<sum;sta++)
{
for (int i=1;i<=n;i++)
for (int j=1;j<=m;j++)
{
for (int s=sta&(sta-1);s;s=sta&(s-1))
{
int t=f[i][j][s]+f[i][j][sta-s]-a[i][j];
if (t<f[i][j][sta])
{
f[i][j][sta]=t;
pre[i][j][sta]=(node){i,j,s};
}
} //方程1
if (f[i][j][sta]<inf)
w=(w+1)%M,q[w][0]=i,q[w][1]=j,v[i][j]=1;
}
spfa(sta);
}
bool flag=0;
for (int i=1;i<=n;i++)
{
for (int j=1;j<=m;j++)
if (!a[i][j])
{
dfs(i,j,(1<<sum)-1);
printf("%d\n",f[i][j][(1<<sum)-1]);
flag=1; break;
}
if (flag) break;
}
for (int i=1;i<=n;i++)
{
for (int j=1;j<=m;j++)
{
if (!a[i][j]) putchar('x');
else if (vis[i][j]) putchar('o');
else putchar('_');
}
puts("");
}
return 0;
}