hrnet网络结构分析

本文深入探讨了高分辨率网络(HRNet)的结构优势,包括其并行连接高分辨率子网以维持空间精度的特性,以及通过多尺度融合提升姿态估计的准确性。同时,介绍了GCN在处理图数据时的角色,作为特征提取器,用于节点分类、图分类等任务。文章还提及了POSE_ROOT代码的数据流和网络结构分析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

高分辨率网络(HRNet),

       高分辨率网络(HRNet),能够在整个过程中维护高分辨率的表示。从高分辨率子网作为第一阶段的开始,逐步增加高分辨率到低分辨率的子网,形成更多的阶段,并将多分辨率子网并行连接。在整个过程中,通过在并行的多分辨率子网络上反复交换信息来进行多尺度的重复融合。通过网络输出的高分辨率表示来估计关键点。生成网络如图

 

 与pose estimation的网络相比,此网络有两个好处:                                                                         1、此网络采用的是并行连接高分辨率到低分辨率的子网,因此,此方法能够保持高分辨率,而不是通过一个低到高的过程恢复分辨率,因此在预测的热图可能在空间上更精确                                 2、此网络使用重复的多尺度融合,利用相同深度和相似级别的低分辨率表示来提高高分辨率表示,反之亦然,从而使得高分辨率表示对于姿态的估计也很充分

GCN图卷积神经网络

GCN,图卷积神经网络,作用和CNN差别不大,本质上还是一个特征提取器,只不过他服务的对象是图数据,GCN很巧妙的设计了一种从图数据中提取特征的方法,从而可以让我们使用这些特征去对图数据进行节点分类、图分类、边预测、还可以顺便得到图的嵌入表示,用途是十分广泛的。图卷积神经网络主要有两类

### FPN(特征金字塔网络)和HRNet的原理 #### FPN(Feature Pyramid Network) FPN是一种用于解决目标检测和语义分割中多尺度问题的深度学习网络结构[^1]。其核心思想是在不同层次上融合来自深层的语义信息和浅层的空间细节信息,从而构建一个多尺度的特征表示。 具体来说,FPN通过自底向上的路径传递低分辨率但富含语义的信息,并通过自顶向下的路径增强高分辨率特征图中的空间精度。这种双向信息流使得模型能够在多个尺度上有效地捕捉物体特征。 ```python def build_fpn(features): P5 = Conv2D(256, kernel_size=1)(features[-1]) lateral_connections = [] for i in range(len(features)-2, -1, -1): # 自顶向下 Pi = UpSampling2D(size=(2, 2))(P5) lateral_connection = Conv2D(256, kernel_size=1)(features[i]) Pi = Add()([Pi, lateral_connection]) if i != 0: lateral_connections.append(Pi) return [Conv2D(256, kernel_size=3, padding="same")(lateral) for lateral in reversed(lateral_connections)] + [P5] ``` #### HRNet(High-Resolution Net) 相比之下,HRNet旨在保持整个过程中高分辨率表征的同时逐步增加低分辨率表征的数量。HRNet的特点在于它始终维持着一组并行存在的高低不同的分辨率分支,在每个阶段结束时会将所有分支聚合起来形成最终输出。 这种方法确保了即使在网络较深的情况下也能保留足够的位置敏感度,这对于姿态估计等任务尤为重要。 ```python class HighResolutionModule(nn.Module): def __init__(self, num_branches, blocks, num_blocks, num_inchannels, num_channels, fuse_method, multi_scale_output=True): super(HighResolutionModule, self).__init__() ... def forward(self, x): if input is a list of different resolutions. y_list = self._forward(x) return y_list ``` --- ### 应用场景比较 对于**FPN**而言,由于其能够很好地处理多尺度的目标检测问题,因此被广泛应用于各种视觉识别任务中,特别是在那些需要精确边界框预测的任务里表现优异。 而**HRNet**则更适合于人体姿态估计、面部关键点定位等人机交互类的应用领域,因为这类任务往往更依赖于图像中小范围内的精细结构信息[^3]。 --- ### 主要差异总结 | 对比项 | FPN | HRNet | | --- | --- | --- | | **设计初衷** | 解决多尺度目标检测难题 | 维护高分辨率特征以提高局部细节感知能力 | | **架构特点** | 结合自下而上与自上而下的多层次特征融合 | 并行存在多种分辨率通道直至最后才合并 | | **适用场合** | 多尺度目标检测、实例分割等 | 姿态估计、医学影像分析 |
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值