hdu1565

                               方格取数(1)

Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 3600    Accepted Submission(s): 1373


Problem Description
给你一个n*n的格子的棋盘,每个格子里面有一个非负数。
从中取出若干个数,使得任意的两个数所在的格子没有公共边,就是说所取的数所在的2个格子不能相邻,并且取出的数的和最大。
 

 

Input
包括多个测试实例,每个测试实例包括一个整数n 和n*n个非负数(n<=20)
 

 

Output
对于每个测试实例,输出可能取得的最大的和
 

 

Sample Input
3
75 15 21
75 15 28
34 70 5
 
Sample Output
188

 

#include<iostream>
#include<cstring>
#include<string>
#include<cstdio>
using namespace std;
int save[1<<20+1],map[40][40];
int dp[3][1<<20+1],cnt,n;
int max1(int a,int b)
{
    return a > b ? a : b;
}
bool ok(int x)
{
    if( x& (x>>1)) return false;
    //    if(x & (x<<2)) return false;
    return true;
}

int getsum(int f,int k)
{
          int ans=0;
          for(int i=0;i<n;i++)
          {
              if(k & (1<<i))
                  ans+=map[f][i];
          }
          return ans;
}  

bool match(int l,int r)
{
    if(l & r) return false;
    return true;
}

int slove()
{
    int i,j,k;
    for(i=0;i<cnt;i++)
    {
        dp[0][i] = getsum(0,save[i]);
    }
    for(i=1;i<=n;i++)    
    {
        for(j=0;j<cnt;j++)
        {
            dp[i%2][j] = 0;
            for(k=0;k<cnt;k++)
            {
                if(match(save[j],save[k]))
                {
                    dp[i%2][j]=max1(dp[i%2][j],dp[(i+1)%2][k]+getsum(i,save[j]));
                }
            }
        }
    }    
                
    int ans=0;
    for( i=0;i<cnt;i++)
        ans=max1(ans,dp[(n+1)%2][i]);
    printf("%d\n",ans);
    return ans;
}

int main()
{
    //int n;
    while(~scanf("%d",&n))
    {
        int i,j;
        memset(dp,0,sizeof(dp));
        for(i=0;i<n;i++)
        {
            for(j=0;j<n;j++)
            {
                scanf("%d",&map[i][j]);
            }
        }
        cnt = 0;
        for(i=0;i<(1<<n);i++)
        {
            if(ok(i))
            {
                save[cnt++] = i;
                //save[cnt++]  = getsum(i);
            }
        }
        slove();
    }
    return 0;
}

 

转载于:https://www.cnblogs.com/Deng1185246160/p/3266142.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值