454.四数相加2
题目:给你四个整数数组 nums1
、nums2
、nums3
和 nums4
,数组长度都是 n ,请你计算有多少个元组 (i, j, k, l)
能满足:
0 <= i, j, k, l < n
nums1[i] + nums2[j] + nums3[k] + nums4[l] == 0
基本思路:要计算有多少个元组能够满足相加之和为0,就必须对这四个数组进行遍历。因为要得到元组的个数,即能够满足相加之和为0的元组的个数,因为要对四个数组进行遍历,为避免出现log(n^4)的循环出现,可以两个两个遍历,所以考虑采用map的数据结构进行存储,key存储两数相加之和,value存储这个‘和’出现的次数,在随后第二次循环时,使用0 - temp
的方法来查找是否存在这个键,如果存在,则加上它的value。
- 需要存储相加之和 和 出现的次数
- 将 和 作为key,出现的次数作为value
class Solution {
public int fourSumCount(int[] nums1, int[] nums2, int[] nums3, int[] nums4) {
Map map = new HashMap();
int res = 0;
for(int i : nums1){
for(int j : nums2){
int temp = i + j;
if(map.containsKey(temp)){
map.put(temp,(int)map.get(temp) + 1);
}else{
map.put(temp,1);
}
}
}
for(int i : nums3){
for(int j : nums4){
int temp = i + j;
if(map.containsKey(0 - temp)){
res += (int)map.get(0 - temp) ;
}
}
}
return res;
}
}
383.赎金信
参考242.有效字母异位词的解法
class Solution {
public boolean canConstruct(String ransomNote, String magazine) {
int[] hash = new int[26];
for(int i = 0; i < magazine.length(); i++){
hash[magazine.charAt(i) - 'a']++;
}
for(int i = 0; i < ransomNote.length(); i++){
hash[ransomNote.charAt(i) - 'a']--;
}
for(int i = 0; i < hash.length; i++){
if(hash[i] < 0){
return false;
}
}
return true;
}
}
15.三数值和
题目:给你一个整数数组 nums ,判断是否存在三元组 [nums[i], nums[j], nums[k]] 满足 i != j、i != k 且 j != k ,同时还满足 nums[i] + nums[j] + nums[k] == 0 。
请你返回所有和为 0 且不重复的三元组。
注意:答案中不可以包含重复的三元组。
基本思路:这道题如果使用哈希方法的话去重将相当繁琐,可以使用指针的方法,如果遇到重复的元素的话直接跳过就好。
-
首先,对数组进行排序
-
定义三个指针,i(cur),left,right
-
如果
nums[i]>0
则认为对于该数组来说不存在能够满足条件的元组 -
如果
nums[i] + nums[left] + nums[right] > 0
,将right向左移,如果nums[i] + nums[left] + nums[right]< 0
,将left向右移动;如果nums[i] + nums[left] + nums[right] = 0
将结果添加到list中,左指针向右移动,右指针向左移动.
关于去重: -
对于i:如果
nums[i]==nums[i - 1]
则认为重复,continue
,注意不是nums[i]==nums[i + 1]
(因为还可能用到nums[i+1]
) -
对于left: 如果
nums[left]==nums[left + 1]
则认为重复,left++
-
对于right: 如果
nums[right]==nums[right - 1]
则认为重复,right--
class Solution {
public List<List<Integer>> threeSum(int[] nums) {
Arrays.sort(nums);
List result = new ArrayList();
for(int i = 0; i < nums.length; i++){
if(nums[i] > 0){
return result;
}
if(i > 0 && nums[i] == nums[i-1]){
continue;
}
int left = i + 1;
int right = nums.length -1;
while(left < right){
if(nums[i]+nums[left]+nums[right]<0){
left++;
}else if(nums[i]+nums[left]+nums[right]>0){
right--;
}else{
result.add(Arrays.asList(nums[i],nums[left],nums[right]));
while(right > left && nums[right] == nums[right - 1]) right--;
while(right > left && nums[left] == nums[left + 1]) left++;
left++;
right--;
}
}
}
return result;
}
}
18.四数之和
- 0 <= a, b, c, d < n
- a、b、c 和 d 互不相同
- nums[a] + nums[b] + nums[c] + nums[d] == target
你可以按 任意顺序 返回答案 。
基本思路:与15.三数之和思路相同,其他的五数之和、六数之和算法与此类似
class Solution {
public List<List<Integer>> fourSum(int[] nums, int target) {
Arrays.sort(nums);
List result = new ArrayList();
for(int i = 0; i < nums.length; i++){
if(nums[i]>0 && nums[i]>target){
return result;
}
if(i > 0 && nums[i] == nums[i - 1]){
continue;
}
for(int j = i + 1; j<nums.length;j++){
if(j > i + 1 && nums[j] == nums[j - 1]) continue;
int left = j + 1;
int right = nums.length - 1;
while(left < right){
if(nums[i] + nums[j] + nums[left] + nums[right] > target){
right--;
}else if(nums[i] + nums[j] + nums[left] + nums[right] < target){
left++;
}else{
result.add(Arrays.asList(nums[i] , nums[j] , nums[left] , nums[right]));
while(left < right && nums[right] == nums[right - 1]) right--;
while(left < right && nums[left] == nums[left + 1]) left++;
left++;
right--;
}
}
}
}
return result;
}
}