NOJ-1041-最长公共子序列

原博客:最长公共子序列

最长公共子序列

描述

一个给定序列的子序列是在该序列中删去若干元素后得到的序列。确切地说,若给定序列X=<x1, x2,…, xm>,则另一序列Z=<z1, z2,…, zk>是X的子序列是指存在一个严格递增的下标序列 <i1, i2,…, ik>,使得对于所有j=1,2,…,k有:
Xij = Zj
如果一个序列S即是A的子序列又是B的子序列,则称S是A、B的公共子序列。
求A、B所有公共子序列中最长的序列的长度。

输入

输入共两行,每行一个由字母和数字组成的字符串,代表序列A、B。A、B的长度不超过200个字符。

输出

一个整数,表示最长各个子序列的长度。

格式:printf("%d\n");

输入样例

programming
contest

输出样例

2

思路:

像LCS这样的问题,它具有重叠子问题的性质,因此:用递归来求解就太不划算了。因为采用递归,它重复地求解了子问题。采用动态规划时,并不需要去一 一 计算那些重叠了的子问题 。对于dp[i][j]表示 (s1,s2…si) 和 (t1,t2…tj) 的最长公共子序列的长度

当i ==0 ||j == 0 时,dp[i][j]=0;

当i,j>0,si==tj时, dp[i][j]=dp[i-1][j-1]+1;

当i,j>0,si!=tj时,dp[i][j]=max{dp[i][j-1],dp[i-1][j]};

时间复杂度:

由于只需要填一个m行n列的二维数组,其中m代表第一个字符串长度,n代表第二个字符串长度

所以时间复杂度为O(m*n)

代码:

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
const int maxn=1000+50;
char s[maxn],t[maxn];int lens,lent,dp[maxn][maxn];
int max(int x,int y){
	if(x>y)return x;
	return y;
}
int main(){
	scanf("%s%s",s+1,t+1);
	lens=strlen(s+1);
	lent=strlen(t+1);
	for(int i=1;i<=lens;i++){
		for(int j=1;j<=lent;j++){
			if(s[i]==t[j]){
				dp[i][j]=dp[i-1][j-1]+1;
			}
			else{
				dp[i][j]=max(dp[i-1][j],dp[i][j-1]);
			}
		}
	}
	printf("%d\n",dp[lens][lent]);
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Phoenix_ZengHao

创作不易,能否打赏一瓶饮料?

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值