最长公共子序列
描述
一个给定序列的子序列是在该序列中删去若干元素后得到的序列。确切地说,若给定序列X=<x1, x2,…, xm>,则另一序列Z=<z1, z2,…, zk>是X的子序列是指存在一个严格递增的下标序列 <i1, i2,…, ik>,使得对于所有j=1,2,…,k有:
Xij = Zj
如果一个序列S即是A的子序列又是B的子序列,则称S是A、B的公共子序列。
求A、B所有公共子序列中最长的序列的长度。
输入
输入共两行,每行一个由字母和数字组成的字符串,代表序列A、B。A、B的长度不超过200个字符。
输出
一个整数,表示最长各个子序列的长度。
格式:printf("%d\n");
输入样例
programming
contest
输出样例
2
思路:
像LCS这样的问题,它具有重叠子问题的性质,因此:用递归来求解就太不划算了。因为采用递归,它重复地求解了子问题。采用动态规划时,并不需要去一 一 计算那些重叠了的子问题 。对于dp[i][j]表示 (s1,s2…si) 和 (t1,t2…tj) 的最长公共子序列的长度 。
当i ==0 ||j == 0 时,dp[i][j]=0;
当i,j>0,si==tj时, dp[i][j]=dp[i-1][j-1]+1;
当i,j>0,si!=tj时,dp[i][j]=max{dp[i][j-1],dp[i-1][j]};
时间复杂度:
由于只需要填一个m行n列的二维数组,其中m代表第一个字符串长度,n代表第二个字符串长度
所以时间复杂度为O(m*n)
代码:
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
const int maxn=1000+50;
char s[maxn],t[maxn];int lens,lent,dp[maxn][maxn];
int max(int x,int y){
if(x>y)return x;
return y;
}
int main(){
scanf("%s%s",s+1,t+1);
lens=strlen(s+1);
lent=strlen(t+1);
for(int i=1;i<=lens;i++){
for(int j=1;j<=lent;j++){
if(s[i]==t[j]){
dp[i][j]=dp[i-1][j-1]+1;
}
else{
dp[i][j]=max(dp[i-1][j],dp[i][j-1]);
}
}
}
printf("%d\n",dp[lens][lent]);
return 0;
}