GPT-4o的出现,整个设计圈都emo了,AI替代成真?

3 月 26 日,OpenAI 更新 GPT-4o 文生图功能。直接震惊了整个设计圈,仅仅3天的发酵时间,GPT-4o已经开始限制使用次数了。

许多设计师也纷纷进行了一些测试,设计师即将失业感觉一点也没有危言耸听。

GPT-4o几乎可以通过自然语言兑换完成现有的复杂图像工作流才能处理的需求。

比如换脸、风格化、换装、修改海报内容等等,作图真的只需要动动嘴巴就行,简直就是指哪打哪,效果相当炸裂。对于这些切实可行的工作流设计应用,再也不需要复杂、精确的提示词和各种参数调试,像平时说话一样给修改意见就行。

更可怕的是,OPenAI的大模型,可以听懂中文了,并且可以生成中文内容。总结了一下网络上大家进行的测试效果,可见应用范围的广泛程度。

1、画漫画

还记得之前网络上爆火的“黏土”风格的人物照片吗?还有抖音上经常刷爆的一键漫画风特效。这种风格化的玩法,在社交媒体上很容易传播。在有了AI加持下,图像类的软件有了更多玩法。

其中宫崎骏的画风,是近几年最流行的,GPT-4o生成起来也是毫不费劲。

不仅是风格化处理,甚至可以生成4宫格的小漫画。你只需要给出1张图和文字描述,它就能还你一个小故事,这对于做条漫和绘本的人来说,这一效果不知道提升了多少工作效率。

2、做表情包

除了做头像,表情包是很多用户喜欢,用它做了表情包之后可以直接上架到微信表情商店,直接变现。

3、电商设计

在互联网测试最多领域作品,便是电商设计了。一键修改海报人物、字体、产品等等。

一键给产品换背景,这一操作给电商产品设计极大的冲击力,以后产品图完全不需要置景拍摄了。

还有这种大促广告,双十一大促之后,618换个数字又能继续使用,甚至还能直接复刻别人的设计模板进行修改,就算是设计师的源文件丢失,也能轻松修改图像。

4、UI设计

在网页端设计里面,经常会有这种样机图展示效果,无论是放在手机里还是电脑里,各种角度还需要贴合,在PPT展示和成品效果展示时,都需要有这种效果图。

5、自媒体封面

在做自媒体的时候,以前我们总是要到处找素材合作实拍一些封面图,但是有了AI之后,可以结合你的需求去生成一个符合该平台的封面需求。许多做自媒体的朋友可能没有什么设计能力,但是有了AI就可以直接去做了。

6、室内装修

毛坯图一句话就装修好,整体布局基本一致。

7、图像处理

一些图像处理的工作,基本上都可以用GPT-4o来处理,例如老照片修复、去水印、抠图等等,直接用文字描述就能生成。

8、包装设计

包装设计平面图有了,但是想要看看立体效果。AI也能一键生成了,效果呈现度来说还是不错的,只是这些包装上面的字体可能会有轻微改变。

9、文字/logo设计

这是应用程度最高的一次,文字海报设计在设计领域应用非常广泛,海报/营销广告都需要,而且这一次中文也能生成。

看起来这一回,AI 的图片生成能力终于超过了某个阈值,切实地在重塑着世界。

当这一冲击到来的时刻,我们也联系了很多设计师好友进行了访问,他们一度表示虽然ChatGPT 生成的图像目前看来确实还不错,但你要去生成一个图像的时候,必须给到一些参考和想法。所以对于原创设计师来说,创新原创的内容才是更关键的。

对于只会修图的普通设计师来说,肯定是有影响的,一些基础的修图功能,AI确实能帮到很多。而且设计师可以把这些修图的基础工作交给AI,自己去做更多创意性的内容,这样才不会被时代淘汰。

对于上游的运营专员来说,可以自己操作工具来生产一样质量的图。跟被冲击的插画师类似,可能会变为帮忙修补gpt4o产出的图的bug,还有叠加原图部分细节上去加强细节还原(类似于高低频修复流程)。

另外,随着这几天的传播速度,OpenAI 升级后的图像工具火爆程度远远超出了预期。其实 GPT-4o 生成图像的速度越来越慢,很多用户已经在抱怨了,现在生成一张图片的速度就长达半个小时。

要知道,现在 GPT-4o 生图还是仅限于付费版用户的功能(Plus、Pro 和 Team 用户)。虽然奥特曼仍然许诺免费的 ChatGPT 账户未来每天可以获得三次生成机会,但是照目前的情况来看距离兑现反而还越来越远了。

而且无论是设计师还是品牌方,虽然能被这次图像生成效果惊讶到,但是他们更看重“精准性”,不能说我要卖这个产品,在AI生成之后,产品得到了变化,那很容易被判定虚假销售。

有设计师说道:“好的工具最终是会推动社会进步的,也会提高大大提高设计师的效率,如果不需要花更多时间在琐碎的抠图、无聊重复的排版上,那么就有了更多时间勾画创意,这其实是很好的事情。

工具是延伸我们能力的载体,拥抱变化,拥抱新工具,尝试更多可能,甚至是多个方向结合的尝试也未尝不可,获得更多成长和机会,而不是每天一成不变的抠图仔,何尝不是AI时代给我们带来的馈赠呢。”

所以啊,设计师无需担忧。GPT-4o的技术呈现可以看出,未来AI工具只会更好更精准,如果你暂时无法使用到GPT-4o,欢迎更多设计师看到神采AI这一简单工具,不需要复杂的工作流搭建,对于设计师来说,神采AI拥有很多基础图片处理的工具,例如抠图、去水印、尺寸外扩、转线稿、转矢量图等等。

甚至神采AI和GPT-4o相比,我们不需要复杂关键词,只需要上传图片,对一些风格/场景进行选择,就能一键生图。这对于设计师来说,又省去了一些学习的时间,可以用更多时间来完成创意设计。

未来,AI工具的发展只会更快,不要一味逃避。对于设计师来说。AI工具的简单使用才能发挥更大效益,你怎么看呢?欢迎在评论区留言和我们一起探讨!

### 比较OpenAI GPT-4GPT-4o模型 #### 特征差异 GPT-4代表了OpenAI在大型语言模型技术上的最新进展,具有更高的参数量和改进的架构设计,旨在提供更为流畅自然的语言理解和生成能力。相比之下,关于GPT-4o的信息较少,通常认为这是针对特定优化版本或是内部使用的变体之一[^1]。 #### 性能对比 具体到性能方面,在公开资料中并没有直接提及GPT-4o的具体评测数据。然而,基于一般模式,可以推测GPT-4o可能是在原有基础上做了针对性调整或优化,比如提升了某些应用场景下的效率或者降低了资源消耗等特性。而标准版GPT-4则经过大规模预训练并广泛应用于多种任务场景,其泛化能力和适应范围更加广阔。 #### 应用领域 由于缺乏详细的官方说明文档来描述两者之间的区别,对于想要深入了解两者的不同之处以及各自适用场景的人来说存在一定难度。但从逻辑推断来看,如果存在所谓的"GPT-4o"版本,则很可能是为了满足特殊需求而定制开发出来的分支版本;它或许会在特定行业应用中有更好的表现,或者是专门为某类计算环境进行了适配性改造。 ```python # 这里仅展示如何通过Python代码加载两个假设存在的模型进行简单推理演示, # 实际操作需依据实际可用API接口编写相应程序。 import transformers as trf model_name_4 = "openai/gpt-4" tokenizer_4 = trf.AutoTokenizer.from_pretrained(model_name_4) model_4 = trf.AutoModelForCausalLM.from_pretrained(model_name_4) # 假设GPT-4o也存在于Hugging Face Model Hub中 model_name_4o = "openai/gpt-4o" tokenizer_4o = trf.AutoTokenizer.from_pretrained(model_name_4o) model_4o = trf.AutoModelForCausalLM.from_pretrained(model_name_4o) text_input = ["Tell me about the weather today."] input_ids_4 = tokenizer_4(text_input, return_tensors="pt").input_ids output_4 = model_4.generate(input_ids_4) input_ids_4o = tokenizer_4o(text_input, return_tensors="pt").input_ids output_4o = model_4o.generate(input_ids_4o) print(f'Output from GPT-4:\n{tokenizer_4.decode(output_4[0], skip_special_tokens=True)}') print(f'\nOutput from GPT-4o:\n{tokenizer_4o.decode(output_4o[0], skip_special_tokens=True)}') ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值