我们看一下 tf.nn.max_pool 这个函数
(还有tf.nn.conv2d 函数)
这两个函数是CNN中两个比较常用的函数,一个是池化层的计算,另一个则是卷积层的计算.。
我们从他们的参数开始,
tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=None,name=None)
除去name参数用以指定该操作的name,与方法有关的一共五个参数:
第一个参数input:指需要做卷积的输入图像,它要求是一个Tensor,
具有[batch, in_height, in_width, in_channels]这样的shape,
具体含义是[训练时一个batch的图片数量, 图片高度, 图片宽度, 图像通道数],注意
这是一个4维的Tensor,要求类型为float32和float64其中之一。
第二个参数filter:相当于CNN中的卷积核,
它要求是一个Tensor,
具有
[filter_height, filter_width, in_channels, out_channels]这样的shape
,
具体含义是
[卷积核的高度,
],要求类型与参数input相同,有一个地方需要注意,第三维卷积核的宽度,图像通道数,卷积核个数
,就是参数input的第四维。in_channels
第三个参数strides:卷积时在图像每一维的步长,这是一个一维的向量,长度为4。
[ 1, strides, strides, 1],我们姑且认为第一位和最后一位固定必须是1
第四个参数padding:string类型的量,只能是"SAME","VALID"其中之一,这个值决定了不同的卷积方式(也就是我们本次的主题)。
第五个参数:use_cudnn_on_gpu:bool类型,是否使用cudnn加速,默认为true; 结果返回一个Tensor,这个输出,就是我们常说的feature map,shape仍然是
[batch, height, width, channels]
这种形式。
我们来看一个实例
valid_pad = tf.nn.max_pool(x,[1,2,2,1],[1,2,2,1],padding='VALID')
.
对于这样的一个实例,我们可以读出以下的内容: 输出为x , 卷积核(这里并不是卷积核,只是意义上的类似)的大小为【2x2】, 移动的步长的横向为2,纵向也为2
tf.nn.max_pool(value, ksize, strides, padding, name=None)
参数是四个,和卷积很类似:
第一个参数value:需要池化的输入,一般池化层接在卷积层后面,所以输入通常是feature map,依然是[batch, height, width, channels]这样的shape
第二个参数ksize:池化窗口的大小,取一个四维向量,一般是[1, height, width, 1],因为我们不想在batch和channels上做池化,所以这两个维度设为了1
第三个参数strides:和卷积类似,窗口在每一个维度上滑动的步长,一般也是[1, stride,stride, 1]
第四个参数padding:和卷积类似,可以取'VALID' 或者'SAME'
返回一个Tensor,类型不变,shape仍然是[batch, height, width, channels]这种形式