tensorflow学习(6):CNN必备函数tf.nn.conv2d和tf.nn.max_pool

一、卷积函数tf.nn.conv2d

tf.nn.conv2d(
input, filter, strides, padding, use_cudnn_on_gpu=None, name=None)
除去name参数用以指定该操作的name,与方法有关的一共五个参数:

第一个参数input:指需要做卷积的输入图像,它要求是一个Tensor,具有[batch, in_height, in_width, in_channels]这样的shape,
具体含义是[训练时一个batch的图片数量, 图片高度, 图片宽度, 图像通道数],注意这是一个4维的Tensor,要求类型为float32和float64其中之一

第二个参数filter:相当于CNN中的卷积核,它要求是一个Tensor,具有[filter_height, filter_width, in_channels, out_channels]这样的shape,具体含义是[卷积核的高度,卷积核的宽度,图像通道数,卷积核个数],要求类型与参数input相同,有一个地方需要注意,第三维in_channels,就是参数input的第四维,第四维output_channels是个数

第三个参数strides:卷积时在图像每一维的步长,这是一个一维的向量,长度4,这四个元素的含义和input的相同

第四个参数padding:string类型的量,只能是"SAME","VALID"其中之一。表示的是卷积的形式,是否考虑边界。"SAME"是考虑边界,
不足的时候用0去填充周围,"VALID"则不考虑

第五个参数:use_cudnn_on_gpu:bool类型,是否使用cudnn加速,默认为true

结果返回一个Tensor,这个输出,就是我们常说的feature map,shape仍然是[batch, height, width, channels]这种形式。

二、最大池化tf.nn.max_pool

tf.nn.max_pool(value, ksize, strides, padding, name=None)
参数是四个,和卷积很类似:

第一个参数value:需要池化的输入,一般池化层接在卷积层后面,所以输入通常是feature map,依然是[batch, height, width, channels]这样的shape

第二个参数ksize:池化窗口的大小,取一个四维向量,一般是[1, height, width, 1],因为我们不想在batch和channels上做池化,所以这两个维度设为了1

第三个参数strides:和卷积类似,窗口在每一个维度上滑动的步长,一般也是[1, stride,stride, 1]

第四个参数padding:和卷积类似,可以取’VALID’ 或者’SAME’

返回一个Tensor,类型不变,shape仍然是[batch, height, width, channels]这种形式

代码分析如下: ```python def cnn_model(features, target): # 对target进行one-hot编码 target = tf.one_hot(target, 15, 1, 0) # 对features中的词进行embedding,得到词向量 word_vectors = tf.contrib.layers.embed_sequence(features, vocab_size=n_words, embed_dim=EMBEDDING_SIZE, scope='words') # 在词向量上增加一个维度,用于卷积 word_vectors = tf.expand_dims(word_vectors, 3) with tf.variable_scope('CNN_Layer1'): # 添加卷积层 conv1 = tf.contrib.layers.convolution2d(word_vectors, N_FILTERS, FILTER_SHAPE1, padding='VALID') # 对卷积结果进行ReLU非线性变换 conv1 = tf.nn.relu(conv1) # 对卷积结果进行最大池化 pool1 = tf.nn.max_pool(conv1, ksize=[1, POOLING_WINDOW, 1, 1], strides=[1, POOLING_STRIDE, 1, 1], padding='SAME') # 对池化结果进行转置,以满足形状要求 pool1 = tf.transpose(pool1, [0, 1, 3, 2]) with tf.variable_scope('CNN_Layer2'): # 添加卷积层 conv2 = tf.contrib.layers.convolution2d(pool1, N_FILTERS, FILTER_SHAPE2, padding='VALID') # 对卷积结果进行ReLU非线性变换 conv2 = tf.nn.relu(conv2) # 对卷积结果进行最大池化 pool2 = tf.squeeze(tf.reduce_max(conv2, 1), squeeze_dims=[1]) # 将池化结果送入全连接层,输出最终的分类结果 logits = tf.contrib.layers.fully_connected(pool2, 15, activation_fn=None) loss = tf.losses.softmax_cross_entropy(target, logits) train_op = tf.contrib.layers.optimize_loss(loss, tf.contrib.framework.get_global_step(), optimizer='Adam', learning_rate=LEARNING_RATE) return ({ 'class': tf.argmax(logits, 1), 'prob': tf.nn.softmax(logits) }, loss, train_op) ``` 1. `tf.one_hot(target, 15, 1, 0)`:对target进行one-hot编码,将每个词转化为一个长度为15的向量,其中对应的位置为1,其余为0。 2. `tf.contrib.layers.embed_sequence(features, vocab_size=n_words, embed_dim=EMBEDDING_SIZE, scope='words')`:对features(即输入的词)进行embedding,将每个词转化为一个EMBEDDING_SIZE维的向量。 3. `tf.expand_dims(word_vectors, 3)`:在词向量上增加一个维度,用于卷积。 4. `tf.contrib.layers.convolution2d(word_vectors, N_FILTERS, FILTER_SHAPE1, padding='VALID')`:添加卷积层,使用N_FILTERS个大小为FILTER_SHAPE1的滤波器进行卷积操作。 5. `tf.nn.relu(conv1)`:对卷积结果进行ReLU非线性变换。 6. `tf.nn.max_pool(conv1, ksize=[1, POOLING_WINDOW, 1, 1], strides=[1, POOLING_STRIDE, 1, 1], padding='SAME')`:对卷积结果进行最大池化,使用大小为POOLING_WINDOW的池化窗口,步长为POOLING_STRIDE。 7. `tf.transpose(pool1, [0, 1, 3, 2])`:对池化结果进行转置,将第3维和第4维交换,以满足后续卷积层的输入要求。 8. `tf.contrib.layers.convolution2d(pool1, N_FILTERS, FILTER_SHAPE2, padding='VALID')`:添加卷积层,使用N_FILTERS个大小为FILTER_SHAPE2的滤波器进行卷积操作。 9. `tf.nn.relu(conv2)`:对卷积结果进行ReLU非线性变换。 10. `tf.squeeze(tf.reduce_max(conv2, 1), squeeze_dims=[1])`:对卷积结果进行最大池化,并去除不必要的维度。 11. `tf.contrib.layers.fully_connected(pool2, 15, activation_fn=None)`:将池化结果送入全连接层,输出最终的分类结果。 12. `tf.losses.softmax_cross_entropy(target, logits)`:计算损失函数,使用softmax交叉熵作为损失函数。 13. `tf.contrib.layers.optimize_loss(loss, tf.contrib.framework.get_global_step(), optimizer='Adam', learning_rate=LEARNING_RATE)`:使用Adam优化器最小化损失函数,更新模型参数。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值