给定一个最大容量为 M 的堆栈,将 N 个数字按 1, 2, 3, …, N 的顺序入栈,允许按任何顺序出栈,则哪些数字序列是不可能得到的?例如给定 M=5、N=7,则我们有可能得到{ 1, 2, 3, 4, 5, 6, 7 },但不可能得到{ 3, 2, 1, 7, 5, 6, 4 }。
输入格式:
输入第一行给出 3 个不超过 1000 的正整数:M(堆栈最大容量)、N(入栈元素个数)、K(待检查的出栈序列个数)。最后 K 行,每行给出 N 个数字的出栈序列。所有同行数字以空格间隔。
输出格式:
对每一行出栈序列,如果其的确是有可能得到的合法序列,就在一行中输出YES,否则输出NO。
输入样例:
5 7 5
1 2 3 4 5 6 7
3 2 1 7 5 6 4
7 6 5 4 3 2 1
5 6 4 3 7 2 1
1 7 6 5 4 3 2
输出样例:
YES
NO
NO
YES
NO
思路:
数组模拟栈
代码:
#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
int a[1010];
int st[1010];
int main()
{
int m,n,k;
scanf("%d %d %d",&m,&n,&k);
while(k--)
{
int top=0;
for(int i=1; i<=n; i++)
scanf("%d",&a[i]);
int b=1; //b模拟1,2,3,4,5,6...入栈顺序
st[++top]=b;
int i=1;
while(i<=n)
{
while(st[top]==a[i]) //当栈内元素与题中所给出栈顺序一样时
{
top--; //元素出栈
i++;
if(top==0) //当top一直--到栈内无元素时,break
break;
}
if(st[top]!=a[i]) //当不等于栈内元素时,让还未入栈的元素入栈
{
b=b+1;
st[++top]=b;
}
if(top>m) //栈的最大容量为m
break;
}
if(top==0)//栈内无元素,符合条件
printf("YES\n");
else
printf("NO\n");
}
return 0;
}