Faster RCNN 绘制PR曲线 test_net参数更改

本文介绍了如何修改Faster RCNN的test_net.py参数以绘制精确率-召回率(PR)曲线。作者感谢并引用了其他博主的分享,并指出正确配置模型以进行测试的重要性。文章提供了代码来源链接,供读者进一步探讨。
摘要由CSDN通过智能技术生成

参考博客:
https://blog.csdn.net/hongxingabc/article/details/80064574
https://blog.csdn.net/dlh_sycamore/article/details/86534712
非常感谢两位博主的分享。
这篇主要分享一下关于test_net.py代码的部分参数更改方式,希望可以帮到大家。
首先要确保训练的模型可以成功用于测试。
这里一共有两处需要更改test_net的地方,如果还有问题可以进一步讨论。
代码来自:https://github.com/dBeker/Faster-RCNN-TensorFlow-Python3.5/issues/60

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

# import _init_paths
from lib.utils.test import test_net
from lib.config import config as cfg
# from lib.config import cfg, cfg_from_file, cfg_from_list
from lib.datasets.factory import get_imdb
import argparse
import pprint
import time, os, sys

import tens
评论 78
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值