python机器学习—— 数据预处理 & 算法初步

该文介绍了使用sklearn库进行数据预处理的步骤,包括获取数据如iris、news和boston数据集,处理缺失值,以及按照不同比例划分训练集和测试集。文章还详细展示了如何进行离差标准化及PCA降维,并在乳腺癌数据集上应用这些方法,最后提到了算法实现中的估计器概念。
摘要由CSDN通过智能技术生成


在这里插入图片描述

数据预处理

1.获取数据

在这里插入图片描述
在这里插入图片描述

from sklearn.datasets import load_iris
li=load_iris()
print("获取特征值")
print(li.data)
print("目标值",li.target)#分类数据集

用于分类的大数据集

在这里插入图片描述

from sklearn.datasets import load_iris,fetch_20newsgroups
news=fetch_20newsgroups(subset="all")
print(news.data)
print(news.target)
from sklearn.datasets import load_boston
lb=load_boston()
print(lb.data)
print(lb.target)#回归数据集

2.处理缺失值

在这里插入图片描述
在这里插入图片描述

3.划分数据集

训练集与测试集划分:70% 30%;80% 20%;75% 25%
在这里插入图片描述

from sklearn.datasets import load_breast_cancer
cancer = load_breast_cancer()##将数据集赋值给cancer变量
cancer_data = cancer['data']
cancer_target = cancer['target']
from sklearn.model_selection import train_test_split
cancer_data_train, cancer_data_test,cancer_target_train, cancer_target_test = \
train_test_split(cancer_data, cancer_target,test_size=0.2, random_state=42) # test_size表示测试集在总数中的占比

4.数据预处理和PCA降维

在这里插入图片描述

#离差标准化
from sklearn.preprocessing import MinMaxScaler
Scaler = MinMaxScaler().fit(cancer_data_train) ##生成规则
##将规则应用于训练集
cancer_trainScaler = Scaler.transform(cancer_data_train) 
##将规则应用于测试集
cancer_testScaler = Scaler.transform(cancer_data_test)

在这里插入图片描述

from sklearn.decomposition import PCA
pca_model = PCA(n_components=10).fit(cancer_trainScaler) ##生成规则
cancer_trainPca = pca_model.transform(cancer_trainScaler) ##将规则应用于训练集
cancer_testPca = pca_model.transform(cancer_testScaler) ##将规则应用于测试集

5.算法实现:估计器

在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Arya's Blog

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值