数据分析---3-1pandas的使用

目录

 数据索引、赋值

处理丢失数据、保存数据

合并contaneting

join拼接

append追加数据

merge合并相关操作

handle overlapping解决重合问题,进行标记

pandas plot数据可视化


基础知识

 数据索引、赋值

dates = pd.date_range('20190405', periods=6)
df = pd.DataFrame(np.arange(24).reshape(6,4), index=dates, columns=["A","B","C","D"])
print(df)
# df[0:3]按行索引,左闭右开
print(df[0:3], df['20190405':'20190406'])
# 选择行标签为20190406的这一行
print(df.loc['20190406 '])
# 选择列标签为A、B的俩列
print(df.loc['20190406',['A','B']])
print(df["A"], df.A)

# 根据位置序号选择:iloc
print(df.iloc[[3,4],[2,3]])
print(df.iloc[3:5,2:4])

# 还有一种混合筛选的方式,但是目前好像已经被弃用了

# Boolean indexing
print(df)
# 列标签A中>8的有(4,5,6)行
print(df.A > 8)
# 先选出了(4,5,6)行,故只输出4,5,6行
print(df[df.A > 8])

df['F']= np.nan
df.iloc[0:3,4] = [0,1,2]
# df['E']= pd.Series([1,2,3,4,5,6], index=pd.date_range('20190405', periods=6))
df['E'] = np.arange(6)
print(df)

处理丢失数据、保存数据

# 处理丢掉数据
print(df.dropna(axis=0, how="any"))
# 0表示第1维度(二维是行,三维是块),
# how默认为为any,表示该维度若至少存在1个nan,则删除该维度;all表示该维度全为nan,则删除该维度
print(df.fillna(value=666))
print(df.isnull())
print(np.any(df.isnull()) == True) # 如若dataframe中存在一个nan,即输出True

# #保存数据
# data = pd.read_csv("./filename.csv")
# print(data)
# data.to_csv("./new_filename.csv")

合并contaneting

# 合并contaneting
df1 = pd.DataFrame(np.ones((3,4))*0, columns=['a','b','c','d']) #全0
df2 = pd.DataFrame(np.ones((3,4))*1, columns=['a','b','c','d']) #全1
df3 = pd.DataFrame(np.ones((3,4))*2, columns=['a','b','c','d']) #全2
print(df1)
print(df2)
print(df3)
res = pd.concat([df1,df2,df3], axis=0, ignore_index=True)
# ignore_index=True忽略之前各个df的行序号,合并后默认从0开始排列
# 注意!axis=0,1,2 表示对1维(0)、二维(o第一维度行,1第二维度列)、三维处理(0第一维度块,1第二维度行,2第三维度列)

join拼接

#join拼接
df1 = pd.DataFrame(np.ones((3,4))*0, columns=['a','b','c','d']) #全0
df2 = pd.DataFrame(np.ones((3,4))*1, columns=['b','c','d','e']) #全1
print(df1)
print(df2)
# 默认方式为join="outer"(取二者并集,没有者用nan代替);可选取inner方式(选取二者的交集)
res = pd.concat([df1,df2],join="inner",ignore_index=True)
print(res)

df1 = pd.DataFrame(np.ones((3,4))*0, columns=['a','b','c','d'], index =[1,2,3]) #全0
df2 = pd.DataFrame(np.ones((3,4))*1, columns=['b','c','d','e'], index = [2,3,4]) #全1
res = pd.concat([df1,df2],axis=1,join_axes=[df1.index])
# 以df1的索引为主索引进行合并,默认为将二者并起来,无数据部分用nan代替
print(res)

append追加数据


# append
df1 = pd.DataFrame(np.ones((3,4))*0, columns=['a','b','c','d']) #全0
df2 = pd.DataFrame(np.ones((3,4))*1, columns=['a','b','c','d']) #全1
df3 = pd.DataFrame(np.ones((3,4))*1, columns=['b','c','d','e']) #全1
res1 = df1.append(df2, ignore_index=True)
print(res1)
# 没有数据的部分用nan代替,因为列序列不完全相同
res2 = df1.append([df2,df3], ignore_index=True)
print(res2)

# 给1个dataframe加1个Series
s1 = pd.Series([6,7,8,9], index=['a','b','c','d'])
res3 = df1.append(s1,ignore_index=True)
print(res3)

merge合并相关操作


# merge 2 dataframe by key/keys
left = pd.DataFrame({'key1':['K0','K1','K2','K3'],
                     'key2':['K0','K1','K2','K3'],
                     'A':['A0','A1','A1','A3'],
                     'B':['B0','B1','B2','B3']})
right = pd.DataFrame({'key1':['K0','K1','K2','K3'],
                     'key2':['K0','K1','K2','K3'],
                     'key3': ['K0','K1','K2','K3'],
                     'C':['C0','C1','C1','C3'],
                     'D':['D0','D1','D2','D3']})
print(left)
print(right)
res = pd.merge(left, right, on="key")
# 以key为主键进行合并

res1 = pd.merge(left, right, on=["key1","key2"])
# merge中how={"inner"\"outer"\"right"\"left"}
# 默认为inner合并(取交集)、concat默认为outer合并(取并集)

res = pd.merge(left, right, on=['key1', 'key2'], how='right')  # default for how='inner'
print(res)
# how = ['left', 'right', 'outer', 'inner']
# 此处操作均和数据库中的类似
# res = pd.merge(left, right, on=['key1', 'key2'], how='left')
# print(res)

# indicator
df1 = pd.DataFrame({'col1':[0,1], 'col_left':['a','b']})
df2 = pd.DataFrame({'col1':[1,2,2],'col_right':[2,2,2]})
print(df1)
print(df2)
res = pd.merge(df1, df2, on='col1', how='outer', indicator=True)
# indicator=True对两个dataframe合并方式进行显示
print(res)
# give the indicator a custom name
res = pd.merge(df1, df2, on='col1', how='outer', indicator='indicator_column')
print(res)

# merged by index
left = pd.DataFrame({'A': ['A0', 'A1', 'A2'],
                                  'B': ['B0', 'B1', 'B2']},
                                  index=['K0', 'K1', 'K2'])
right = pd.DataFrame({'C': ['C0', 'C2', 'C3'],
                                     'D': ['D0', 'D2', 'D3']},
                                      index=['K0', 'K2', 'K3'])
print(left)
print(right)
# left_index and right_index
# res = pd.merge(left, right, left_index=True, right_index=True, how='outer')
# print(res)
res = pd.merge(left, right, left_index=True, right_index=True, how='inner')
print(res)

handle overlapping解决重合问题,进行标记

# handle overlapping解决重合问题,进行标记
boys = pd.DataFrame({'num': ['K0', 'K1', 'K2'], 'age': [21, 22, 23]})
girls = pd.DataFrame({'num': ['K0', 'K0', 'K3'], 'age': [24, 25, 26]})
print(boys)
print(girls)
res1 = pd.merge(boys, girls, on='num', suffixes=['_boy', '_girl'], how='inner')
# suffixes对数据来源进行标识
res2 = pd.merge(boys, girls, on='num', suffixes=['_boy', '_girl'], how='outer')
print(res1)
print(res2)

pandas plot数据可视化

pandas plot数据可视化
import pandas as pd
import numpy as np
from matplotlib import pyplot as plt



# Series
data = pd.Series(np.random.randn(1000), index=np.arange(1000))
# np.random.randn(1000)返回一组服从正态分布的样本值,其稚为1
# np.random.rand(1000)返回一组[0,1)均匀分布的随机样本值(注意左闭右开)
# 详细区别参见https://blog.csdn.net/zenghaitao0128/article/details/78556535

print(np.random.rand(1000))
print(data)
data = data.cumsum()
按照所给定的轴参数返回元素的梯形累计和,
axis=0,按照行累加。axis=1,按照列累加。
axis不给定具体值,就把numpy数组当成一个一维数组。
data.plot()

#
# DataFrame
data = pd.DataFrame(np.random.randn(1000, 4), index=np.arange(1000), columns=list("ABCD"))
#有两个及以上参数时,则返回对应维度的数组,能表示向量或矩阵
# 1000行4列的数组
data = data.cumsum()
# # plot methods:
# # 'bar', 'hist', 'box', 'kde', 'area', scatter', hexbin', 'pie'
ax = data.plot.scatter(x='A', y='B', color='DarkBlue', label="Class 1")
# 生成一个散点图ax对象
data.plot.scatter(x='A', y='C', color='LightGreen', label='Class 2', ax=ax)
# 散点图ax对象附加给参数ax,其中参数ax标识数轴==也就是两个图合称为一张图

plt.show()

 

1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
应用背景为变电站电力巡检,基于YOLO v4算法模型对常见电力巡检目标进行检测,并充分利用Ascend310提供的DVPP等硬件支持能力来完成流媒体的传输、处理等任务,并对系统性能做出一定的优化。.zip深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值