跳台阶问题的扩展 - 动态规划解法(Java)

103 篇文章 ¥59.90 ¥99.00
本文介绍了跳台阶问题的扩展版,利用动态规划解决到达第 n 级台阶的不同跳法。通过定义长度为 n+1 的数组 dp,根据状态转移方程 dp[i] = dp[i-1] + dp[i-2] + dp[i-3],实现 Java 代码求解。以 n=5 为例,共有 13 种不同跳法。该方法时间复杂度和空间复杂度均为 O(n)。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

跳台阶问题的扩展 - 动态规划解法(Java)

问题描述:

假设有 n 级台阶,一个人每次可以跳 1 级、2 级或 3 级。请问到达第 n 级台阶有多少种不同的跳法?

解决方案:

这个问题可以使用动态规划来解决。我们可以定义一个长度为 n+1 的数组 dp,其中 dp[i] 表示到达第 i 级台阶的跳法总数。

当 i=0 时,表示还没有台阶可跳,所以 dp[0]=1。
当 i=1 时,只有一级台阶可跳,所以 dp[1]=1。
当 i=2 时,有两种跳法:跳一次两级台阶或者跳两次一级台阶,所以 dp[2]=2。

对于 i>2 的情况,我们可以从 i-1、i-2 和 i-3 这三个状态转移过来,分别对应跳了一级、两级和三级台阶。所以状态转移方程为:

dp[i] = dp[i-1] + dp[i-2] + dp[i-3]

最终的结果即为 dp[n]。

下面是使用 Java 语言实现的代码:

public class 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值