跳台阶问题的扩展 - 动态规划解法(Java)
问题描述:
假设有 n 级台阶,一个人每次可以跳 1 级、2 级或 3 级。请问到达第 n 级台阶有多少种不同的跳法?
解决方案:
这个问题可以使用动态规划来解决。我们可以定义一个长度为 n+1 的数组 dp,其中 dp[i] 表示到达第 i 级台阶的跳法总数。
当 i=0 时,表示还没有台阶可跳,所以 dp[0]=1。
当 i=1 时,只有一级台阶可跳,所以 dp[1]=1。
当 i=2 时,有两种跳法:跳一次两级台阶或者跳两次一级台阶,所以 dp[2]=2。
对于 i>2 的情况,我们可以从 i-1、i-2 和 i-3 这三个状态转移过来,分别对应跳了一级、两级和三级台阶。所以状态转移方程为:
dp[i] = dp[i-1] + dp[i-2] + dp[i-3]
最终的结果即为 dp[n]。
下面是使用 Java 语言实现的代码:
public class