基于梯度的优化算法求解单目标优化问题
梯度优化算法是一类常用于求解单目标优化问题的方法,它利用目标函数的梯度信息来指导搜索方向和步长,以逐步逼近最优解。在本文中,我们将介绍梯度优化算法的基本原理,并提供一个用Matlab实现的示例代码。
梯度优化算法的基本原理是通过迭代的方式不断更新变量的取值,直到达到预设的停止条件。算法的核心思想是利用目标函数关于变量的梯度信息来确定下一步的搜索方向和步长。常见的梯度优化算法包括梯度下降法(Gradient Descent)、牛顿法(Newton’s Method)和拟牛顿法(Quasi-Newton Methods)等。
以下是一个基于梯度下降法的示例代码,用于求解单目标优化问题:
% 目标函数定义
function f = objective(x)
f =