基于被囊群算法优化的最小支持向量机(TSA-LSSVM)在交通流数据预测中的应用

79 篇文章 14 订阅 ¥59.90 ¥99.00
本文探讨了如何使用被囊群算法优化最小支持向量机(TSA-LSSVM)以提高交通流数据预测的准确性。通过模拟生物系统的被囊群行为,该算法展示出更好的全局搜索能力和收敛性。在Matlab中实现的示例代码详细展示了数据预处理、模型训练和预测过程。
摘要由CSDN通过智能技术生成

基于被囊群算法优化的最小支持向量机(TSA-LSSVM)在交通流数据预测中的应用

交通流数据的准确预测对于城市交通管理和规划至关重要。最小支持向量机(LSSVM)是一种有效的机器学习方法,可以用于交通流数据的预测。然而,传统的LSSVM在面对大规模和高维度的数据时存在一定的挑战。为了改进LSSVM的性能,研究人员引入了被囊群算法,对TSA-LSSVM进行优化,以提高其预测准确性。

被囊群算法是一种启发式优化算法,模拟了生物系统中的被囊群行为,通过群体智能的方式来搜索最优解。该算法将被囊群划分为多个小群体,并通过调整被囊的位置和大小来实现搜索空间的探索。通过与传统的优化算法相比较,被囊群算法具有更好的全局搜索能力和收敛性能。

下面是使用Matlab实现的基于被囊群算法优化的TSA-LSSVM的代码示例:

% 导入数据
load traffic_data.mat

% 划分训练集和测试集
train_ratio = 0.8;
train_size 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值