基于被囊群算法优化的最小支持向量机(TSA-LSSVM)在交通流数据预测中的应用
交通流数据的准确预测对于城市交通管理和规划至关重要。最小支持向量机(LSSVM)是一种有效的机器学习方法,可以用于交通流数据的预测。然而,传统的LSSVM在面对大规模和高维度的数据时存在一定的挑战。为了改进LSSVM的性能,研究人员引入了被囊群算法,对TSA-LSSVM进行优化,以提高其预测准确性。
被囊群算法是一种启发式优化算法,模拟了生物系统中的被囊群行为,通过群体智能的方式来搜索最优解。该算法将被囊群划分为多个小群体,并通过调整被囊的位置和大小来实现搜索空间的探索。通过与传统的优化算法相比较,被囊群算法具有更好的全局搜索能力和收敛性能。
下面是使用Matlab实现的基于被囊群算法优化的TSA-LSSVM的代码示例:
% 导入数据
load traffic_data.mat
% 划分训练集和测试集
train_ratio = 0.8;
train_size