商品推荐是当今电子商务平台中非常重要的一项功能。SASRec(Self-Attentive Sequential Recommendation)是一种基于Transformer的算法,被广泛应用于商品推荐领域。本教程将详细介绍SASRec Transformer算法的原理,并提供相应的源代码。
1. 算法原理
SASRec算法是基于Transformer架构的序列推荐模型。它通过学习用户的历史行为序列来预测下一个可能感兴趣的商品。下面是算法的主要步骤:
-
输入表示:将用户的历史行为序列转换为嵌入向量表示。可以使用嵌入层将每个商品ID映射为固定长度的向量表示。
-
自注意力机制:使用自注意力机制来建模商品序列中的依赖关系。通过计算每个商品与序列中其他商品的注意力权重,可以获得更有信息量的商品表示。
-
Transformer编码器:使用多层的Transformer编码器来捕捉序列中的长期依赖关系。每个Transformer编码器由多头注意力机制和前馈神经网络组成。
-
预测层:将Transformer编码器的输出通过一个全连接层映射到预测的商品空间。可以使用softmax函数将输出转换为概率分布,以便进行商品推荐。
2. 实现代码
下面是使用Python和TensorFlow框架实现SASRec Transformer算法的示例代码: