作者:一元 ,公众号:炼丹笔记
背景
本文介绍一篇较早使用Self-Attention进行序列化推荐的文章,也是目前大多数序列化推荐算法非常重要的Baseline,最典型的场景可以参见标题,该篇文章的思路也是现在推荐系统岗位经常考的一篇,还不速速学习一波。
序列动态是许多当代推荐系统的一个重要特征,它试图根据用户最近执行的操作来捕捉用户活动的“上下文“。本文提出了一个基于self-attention的序列模型(SASRec),它让我们可以捕捉长期语义(如RNN),但是,使用注意机制,它的预测基于相对较少的动作(如MC)。在每一个时间步,SASRec都会从用户的行为历史中找出哪些项目是“相关的”,并使用它们来预测下一个项目。大量的实证研究表明,该方法在稀疏和密集的数据集上都优于各种最新的序列模型(包括基于MC/CNN/RNN的方法)。
此处我们直接介绍模型。
模型

方案描述

1. Embedding层

A. Positional Embedding