对极大似然估计的理解
极大似然估计的形式:
1.离散型统计模型
表示观测值。
2.连续型统计模型
问题:问什么要取似然函数最大值来估算参数θ?
自己的理解:
似然函数的形式是理论上各事件(这个事件表示一次采样一个样本,每个样本有不同的分类)的发生概率。现在发生了的某个事件,似然函数就变成了这个样本的理论概率,而现在的采样结果代表某个事件已经确定发生了,那这个事发生的理论概率应该尽量大(在这个事件发生的理论概率中最大的那种情况),才会导致这个事件发生概率最大,所以要用极大似然函数估计。
或者这么想:
似然函数的形式是理论上各事件的发生概率。现在发生了某一事件,可以认为,这个事件是理论上概率最大的那个事件。所以使似然函数最大,也就是让现在发生的这个事件成为概率最大的事件。
一些其他的理解:
极大似然估计,就是基于一个基本常识的假设:现实发生的样本最有可能是整个样本空间中概率最大的。所以就假设为最大概率来进行参数估计。
学过统计物理就很直观了,n次独立实验的概率就是乘法原理。而我们会倾向于认为,现实发生的事件应该就对应于理论上概率最大的那一个事件。历史上玻尔兹曼分布就是这么算出来的