Python之argparse命令行参数解析

Python之argparse命令行参数解析

一、argparse是什么?

argparse 是 Python 的一个标准库,用于命令行参数的解析,这意味着我们无需在代码中手动为变量赋值,而是可以直接在命令行中向程序传递相应的参数,再由变量去读取这些参数。

如果没有安装 argparse,可执行如下命令进行安装

pip install argparse

使用时只需导入

import argparse

1.1 一个例子

我们先来看一个最简单的例子,了解了使用 argparse 的大致步骤后,再来详细介绍各个API。

""" 求解两数之和 """
twoSum = lambda x, y: x + y

parser = argparse.ArgumentParser()
parser.add_argument('--a', type=int, required=True, help="first number")
parser.add_argument('--b', type=int, required=True, help="second number")
args = parser.parse_args()

first_num, second_num = args.a, args.b
print(twoSum(first_num, second_num))

将以上内容保存到 demo.py 中。我们先在命令行执行

python3 demo.py -h

可以看到相应的帮助信息

usage: demo.py [-h] --a A --b B

options:
  -h, --help  show this help message and exit
  --a A       first number
  --b B       second number

从 usage 可以看出 demo.py 接收两个必选项:–a 和 --b(带有 [] 的为可选项,没带的为必选项),它们分别代表第一个数和第二个数,其中 A 和 B 分别代表实际传入的参数。

在命令行中执行

python3 demo.py --a 12 --b 19

返回结果是 31,这说明我们通过命令行完成了求解两数之和这个操作。

二、ArgumentParser

使用 argparse 的第一步是先创建一个 ArgumentParser 对象,该对象包含将命令行解析成 Python 数据类型所需的全部信息,其常用参数如下

argparse.ArgumentParser(prog=None, usage=None, description=None, epilog=None)

2.1 prog

prog 默认值为 os.path.basename(sys.argv[0]),也就是程序所在文件的名称。例如在第一章节中,我们在创建 ArgumentParser 对象时没有指定 prog,因此采用了默认值 demo.py。

先来看一个例子

parser = argparse.ArgumentParser()
parser.print_help()  # 和在命令行调用 python3 demo.py -h 的效果一样(会有一些细微差别)

输出的帮助信息:

usage: demo.py [-h]

options:
  -h, --help  show this help message and exit

可以看到若不指定 prog,则帮助信息将显示 demo.py 作为程序名称。现在指定 prog

parser = argparse.ArgumentParser(prog="My Program")

相应的帮助信息:

usage: My Program [-h]

options:
  -h, --help  show this help message and exit

可以看到原先 demo.py 的地方变成了 My Program。

2.2 usage

默认情况下,ArgumentParser 根据它包含的选项来构建用法消息。

这里依然使用第一章节的例子:

usage: demo.py [-h] --a A --b B

options:
  -h, --help  show this help message and exit
  --a A       first number
  --b B       second number

因为我们没有指定 usage,所以 ArgumentParser 将使用它包含的三个选项:-h、–a、–b 来构建用法消息 usage,它位于帮助信息的第一行。

如果觉得默认的 usage 有些冗余(因为下方的 options 已经详细介绍了各个选项),我们可以自定义 usage

parser = argparse.ArgumentParser(usage="See the options below for usage")

相应的帮助信息变成

usage: See the options below for usage

options:
  -h, --help  show this help message and exit
  --a A       first number
  --b B       second number

需要注意的是,在指定了 usage 后,prog 将会被覆盖,即使在 ArgumentParser 中指定了 prog 也没有用。

需要注意的是,在指定了 usage 后,prog 将会被覆盖,即使在 ArgumentParser 中指定了 prog 也没有用。

2.3 description

description 参数用来简要描述这个程序做什么以及怎么做。不指定 description 时,帮助信息中将不予显示。

依然使用第一章节的例子,这里我们指定 description

parser = argparse.ArgumentParser(description="This is my program.")

相应的帮助信息

usage: demo.py [-h] --a A --b B

This is my program.

options:
  -h, --help  show this help message and exit
  --a A       first number
  --b B       second number

可以看到 usage 和 options 中间多了一行内容,这就是我们指定的 description。

2.4 epilog

该参数和 description 类似,区别在于,description 放在了 options 之前,而 epilog 放在了 options 之后。

依然使用第一章节的例子,这里我们同时指定 description 和 epilog

parser = argparse.ArgumentParser(description="This is my program.", epilog="The end.")

相应的帮助信息

usage: demo.py [-h] --a A --b B

This is my program.

options:
  -h, --help  show this help message and exit
  --a A       first number
  --b B       second number

The end.

通常来讲,以上四个参数中用的最多的是 prog

三、add_argument

add_argument() 方法用于向解析器中添加一个选项(位置参数)。

ArgumentParser.add_argument(
	name or flags...,
	nargs,
	default,
	type,
	choices,
	required,
	help
)

以上仅列出了 add_argument() 方法中最常用的几个参数。

3.1 name or flags

name or flags 为选项(options)或位置参数(positional arguments)。如果是选项的话可以传入一系列flags(例如自带的帮助就有两个:-h、–help),如果是位置参数的话则只能传入一个 name。

例如

parser = argparse.ArgumentParser()
parser.add_argument('-i', '--install')
args = parser.parse_args()

相应的帮助信息:

usage: demo.py [-h] [-i INSTALL]

options:
  -h, --help            show this help message and exit
  -i INSTALL, --install INSTALL

这意味着我们在命令行调用 python3 demo.py -i INSTALL 和 python3 demo.py --install INSTALL 是等价的。

与选项不同的是,位置参数前不能加 -,并且每次只能传入一个,例如

parser = argparse.ArgumentParser()
parser.add_argument('param1')
parser.add_argument('param2')
args = parser.parse_args()

相应的帮助信息:

usage: demo.py [-h] param1 param2

positional arguments:
  integer

options:
  -h, --help  show this help message and exit

从 usage 可以看出位置参数在调用命令行时是必须传入的。

以上是先添加位置参数 param1 再添加 param2 的,如果我们调换顺序,则帮助信息中的两个参数的位置也将调换,这也诠释了 “位置” 的含义。

可以看出,选项和位置参数,前者相当于关键字传参,后者相当于位置传参。

3.2 type & default

顾名思义,type 指选项或位置参数将要被转换成的数据类型(在命令行中传入的参数都默认以 str 类型存在)。

例如

parser = argparse.ArgumentParser()
parser.add_argument('--a')
parser.add_argument('--b', type=int)
args = parser.parse_args()
print(type(args.a), type(args.b))

执行 python3 demo.py --a 3 --b 3 后得到结果

<class 'str'> <class 'int'>

default 指选项或位置参数的默认值,例如

parser = argparse.ArgumentParser()
parser.add_argument('--a', type=int, default=5)
args = parser.parse_args()
print(args.a)

直接执行 python3 demo.py 将会输出 5,因为采用了默认值。如果执行 python3 demo.py --a x 则会输出 x(x 是任何整数,且不能省略)。

如果没有为 --a 指定默认值,且在命令行执行时也没有向 --a 传参,则 args.a 为 None。

3.3 required & help

因为位置参数在命令行中是必须传入的,所以 required 只能用于选项。required 设为 True 则代表此选项为必选项,否则为可选项,默认为 False。

例如

parser = argparse.ArgumentParser()
parser.add_argument('--a')
args = parser.parse_args()

此时帮助信息为

usage: demo.py [-h] [--a A]

options:
  -h, --help  show this help message and exit
  --a A

usage 一行中 --a A 被一对方括号 [] 括了起来,说明 --a 是可选项。现在指定 required=True

parser.add_argument('--a', required=True)

这时候帮助信息变为

usage: demo.py [-h] --a A

options:
  -h, --help  show this help message and exit
  --a A

可以看到 [] 消失了,说明 --a 变成了必选项。

help 用来描述一个选项或位置参数,该描述将会显示在帮助信息中

parser = argparse.ArgumentParser()
parser.add_argument('--lr', type=float, default=1e-3, help="learning rate")
args = parser.parse_args()

相应的帮助信息

usage: demo.py [-h] [--lr LR]

options:
  -h, --help  show this help message and exit
  --lr LR     learning rate

3.4 nargs & choices

假如选项 --a 需要接收5个参数,此时需要用 nargs 来指定

parser = argparse.ArgumentParser()
parser.add_argument('--a', type=int, nargs=5)
args = parser.parse_args()
print(args.a)

执行 python3 demo.py --a 1 2 3 4 5 可以得到

[1, 2, 3, 4, 5]

需要注意,nargs=1 最终会得到一个只含一个元素的列表,而非元素本身。

更进一步,nargs=‘?’ 代表传入参数的数量为0个或1个,nargs=‘+’ 代表传入参数的数量至少1个,nargs=‘*’ 代表可传入任意多的参数。

有些时候,选项 --a 的取值只能是固定的几种,例如 --a 只能从整数1,3,5中选取,这时候需要用 choices 来指定一个列表

parser = argparse.ArgumentParser()
parser.add_argument('--a', type=int, choices=[1, 3, 5])
args = parser.parse_args()

相应的帮助信息

usage: demo.py [-h] [--a {1,3,5}]

options:
  -h, --help   show this help message and exit
  --a {1,3,5}

如果 --a 后面跟的数字不是1,3,5中的一个就会报错。

四、parse_args

我们先来看一个例子。

import argparse
import sys

parser = argparse.ArgumentParser()
parser.add_argument('--a', type=int)
parser.add_argument('--b', type=int)
print(sys.argv)

在命令行执行 python3 demo.py --a 3 --b 5 得到结果

['demo.py', '--a', '3', '--b', '5']

从中可以看出,sys.argv[0] 是文件名,sys.argv[1:] 是我们在命令行中传入的选项。

在之前的学习过程中,可能你已经注意到了,每次我们为解析器添加完相应的选项/位置参数后,都要执行一遍 parser.parse_args()。默认情况下,parse_args() 采用 sys.argv[1:] 作为其参数,并返回一个命名空间(类似于字典)。

举个例子

parser = argparse.ArgumentParser()
parser.add_argument('--a', type=int, nargs=3)
parser.add_argument('--b', type=str)
parser.add_argument('--c', type=float)
args = parser.parse_args()
print(type(args))
print(args)

执行 python3 demo.py --a 1 3 5 --b ‘k’ --c 3.14 得到

<class 'argparse.Namespace'>
Namespace(a=[1, 3, 5], b='k', c=3.14)

如果只执行 python3 demo.py --a 1 3 5 --b ‘k’,则得到

<class 'argparse.Namespace'>
Namespace(a=[1, 3, 5], b='k', c=None)

可以看出,如果在命令行中没有提供相应的选项,并且该选项也没有默认值,则在命名空间中该选项的值为 None,这一点我们早在 3.2 节中就已经提到了。

parser.parse_args() 返回的是一个命名空间对象,我们通常用 args 来存储。要访问 args 中键 k 对应的值 v,只需要 args.k 即可。

五、避免报错

在执行 args = parser.parse_args() 这一步中,可能会出现报错情况,例如

parser = argparse.ArgumentParser()
parser.add_argument('--a', type=int)
args = parser.parse_args()

如果我们在命令行执行 python3 demo.py --a ‘abc’ 就会报错,这是因为字符串无法转换成整数。

usage: demo.py [-h] [--a A]
demo.py: error: argument --a: invalid int value: 'abc'

一般我们会采用如下代码块来避免直接看到不友好的报错

try:
    args = parser.parse_args()
except:
    parser.print_help()
    sys.exit(0)

六、使用shell脚本进行调参

深度学习经常需要调参,如果直接使用IDE打开 .py 文件去调未免显得有些笨拙,而且也会变得不好维护。如果使用 argparse,虽然不用每次修改 .py 文件,但在命令行里反复修改也略显麻烦,这时候就需要将其与shell脚本进行结合了。

为简便起见,假设我们的项目架构如下:

myproject
├── __init__.py
├── model
│   ├── model1.py
│   ├── model2.py
│   └── model3.py
├── scripts
│   └── train.sh
├── train.py
└── utils
    ├── utils1.py
    └── utils2.py

其中 train.py 中的内容为

import argparse
import sys

# 导入其他的包...

# 假设只有两个超参数需要调

parser = argparse.ArgumentParser()
parser.add_argument('--bs', type=int, default=128, help="batch size")
parser.add_argument('--lr', type=float, default=0.001, help="learning rate")

try:
    args = parser.parse_args()
except:
    parser.print_help()
    sys.exit(0)

# 超参数设置

BATCH_SIZE = args.bs
LEARNING_RATE = args.lr

# 其他代码...

这时候我们只需要在脚本目录 scripts 下新建一个文件 train.sh,向其中写入内容

# 用来确保无论在哪里执行该脚本,都能够正确返回该脚本所在的目录,以便后续根据这个目录来定位所要运行程序的相对位置

cd "$(dirname $0)"

python3 ../train.py \
--bs 256 \
--lr 0.005 \

然后在命令行执行(假设当前处于 myproject 目录下)

cd scripts && bash train.sh

《AUTOSAR谱系分解(ETAS工具链)》之总目录

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值