题目大意:给定一个n个点的无根树,要求找到一个根节点,使深度之和最大
令f[x]为以x为根的子树的深度之和
首先我们找到任意一个节点进行深搜,统计出每棵子树的大小,以及所有点的深度之和
然后再以该节点为根深搜一遍,此时状态从父节点转移至子节点,转移方程如下:
当我们将根节点从4节点变为5节点时,橙色部分每个点的深度+1,绿色部分每个点的深度-1
故得到状态转移方程:
f[x]=f[fa[x]]+n-2*size[x]
最后扫一遍数组即可出解
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define M 1001001
using namespace std;
typedef long long ll;
struct abcd{
int to,next;
}table[M<<1];
int head[M],tot;
int n,ans,fa[M],siz[M];
ll f[M];
//根节点深度为0
void Add(int x,int y)
{
table[++tot].to=y;
table[tot].next=head[x];
head[x]=tot;
}
void DFS1(int x)
{
int i;
siz[x]=1;
for(i=head[x];i;i=table[i].next)
{
if(table[i].to==fa[x])
continue;
fa[table[i].to]=x;
DFS1(table[i].to);
siz[x]+=siz[table[i].to];
f[x]+=f[table[i].to]+siz[table[i].to];
}
}
void DFS2(int x)
{
int i;
if(x!=1)
f[x]=f[fa[x]]+n-siz[x]-siz[x];
for(i=head[x];i;i=table[i].next)
{
if(table[i].to==fa[x])
continue;
DFS2(table[i].to);
}
}
int main()
{
int i,x,y;
cin>>n;
for(i=1;i<n;i++)
{
scanf("%d%d",&x,&y);
Add(x,y);
Add(y,x);
}
DFS1(1);
DFS2(1);
for(i=1;i<=n;i++)
if(f[i]>f[ans])
ans=i;
cout<<ans<<endl;
}