BZOJ 1057 ZJOI2007 棋盘制作 单调栈

博客介绍了如何利用单调栈解决BZOJ 1057题目的问题,即在给定的黑白矩阵中找到最大的黑白相间子正方形和子矩阵。通过首先翻转奇数位置的点,然后寻找纯色子正方形和子矩阵,通过层层剖分矩阵并使用单调栈确定每个点向左右两侧的最大拓展距离,从而更新最大解答。

题目大意:给定一个黑白两色的矩阵,求最大的黑白相间的子正方形和子矩阵

将奇数位置的点反色,然后就是求纯色的最大子正方形和子矩阵

将矩阵一层层剖分,每层上方是一段类似于▆▃▇▂▉的东西,用单调栈跑出每个点向左向右能拓展到的最大距离,更新答案即可

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define M 2020
using namespace std;
int m,n,ans1,ans2;
int map[M][M],a[M];
void Calculate()
{
	static int stack[M],top;
	static int left[M],right[M];
	int i;top=0;
	for(i=1;i<=n+1;i++)
	{
		while( top && a[i]<a[stack[top]] )
		{
			right[stack[top]]=i;
			stack[top--]=0;
		}
		stack[++top]=i;
	}
	top=0;
	for(i=n;~i;i--)
	{
		while( top && a[i]<a[stack[top]] )
		{
			left[stack[top]]=i;
			stack[top--]=0;
		}
		stack[++top]=i;
	}
	for(i=1;i<=n;i++)
	{
		int len=right[i]-left[i]-1;
		ans1=max(ans1,min(len,a[i])*min(len,a[i]) );
		ans2=max(ans2,len*a[i]);
	}
}
int main()
{
	int i,j;
	cin>>m>>n;
	for(i=1;i<=m;i++)
		for(j=1;j<=n;j++)
		{
			scanf("%d",&map[i][j]);
			if(i+j&1) map[i][j]^=1;
		}
	for(i=1;i<=m;i++)
	{
		for(j=1;j<=n;j++)
			a[j]=(map[i][j]?0:a[j]+1);
		Calculate();
	}
	memset(a,0,sizeof a);
	for(i=1;i<=m;i++)
		for(j=1;j<=n;j++)
			map[i][j]^=1;
	for(i=1;i<=m;i++)
	{
		for(j=1;j<=n;j++)
			a[j]=(map[i][j]?0:a[j]+1);
		Calculate();
	}
	cout<<ans1<<endl<<ans2<<endl;
	return 0;
}


内容概要:本文介绍了基于Matlab代码实现的【EI复现】考虑网络动态重构的分布式电源选址定容优化方法,重点研究在电力系统中结合网络动态重构技术进行分布式电源(如光伏、风电等)的最佳位置选择与容量配置的双层优化模型。该方法综合考虑配电网结构变化与电源布局之间的相互影响,通过优化算法实现系统损耗最小、电压稳定性提升及可再生能源消纳能力增强等多重目标。文中提供了完整的Matlab仿真代码与案例验证,便于复现实验结果并拓展应用于微网、储能配置与配电系统重构等相关领域。; 适合人群:电力系统、电气工程及其自动化等相关专业的研究生、科研人员及从事新能源规划与电网优化工作的工程师;具备一定Matlab编程基础和优化理论背景者更佳。; 使用场景及目标:①用于科研论文复现,特别是EI/SCI级别关于分布式能源优化配置的研究;②支【EI复现】考虑网络动态重构的分布式电源选址定容优化方法(Matlab代码实现)撑毕业设计、课题项目中的电源选址定容建模与仿真;③辅助实际电网规划中对分布式发电接入方案的评估与决策; 阅读建议:建议结合提供的网盘资源下载完整代码与工具包(如YALMIP),按照文档目录顺序逐步学习,注重模型构建思路与代码实现细节的对应关系,并尝试在不同测试系统上调试与扩展功能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值