BZOJ 3251 树上三角形 暴力

9 篇文章 0 订阅

题目大意:给定一棵树,每个点上有点权,多次修改点权,以及查询两点间路径上所有点权之间能否找出三个值构成三角形的三边长

被逗了- -

首先考虑如果一些数不能构成三角形的三边长,那么这些数最多有多少个?

显然当这些数构成斐波那契数列的时候数值的个数最多- -

那么2^31以内共有多少个斐波那契数?46!

也就是说当两点间路径上的点>=47时答案一定是YES!

那么小于47时只要暴力就行- - 时间复杂度O(mlogk) 其中k是最大的数的大小- -

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define M 100100
using namespace std;
struct abcd{
	int to,next;
}table[M<<1];
int head[M],tot;
int n,m,a[M],fa[M],dpt[M];
int stack[60],top;
void Add(int x,int y)
{
	table[++tot].to=y;
	table[tot].next=head[x];
	head[x]=tot;
}
void DFS(int x)
{
	int i;
	dpt[x]=dpt[fa[x]]+1;
	for(i=head[x];i;i=table[i].next)
		if(table[i].to!=fa[x])
		{
			fa[table[i].to]=x;
			DFS(table[i].to);
		}
}
bool Check(int x,int y)
{
	top=0;
	if(dpt[x]<dpt[y])
		swap(x,y);
	while(dpt[x]>dpt[y])
	{
		stack[++top]=a[x];
		if(top>=47) return true;
		x=fa[x];
	}
	while(x!=y)
	{
		stack[++top]=a[x];
		stack[++top]=a[y];
		if(top>=47) return true;
		x=fa[x];y=fa[y];
	}
	stack[++top]=a[x];
	if(top>=47) return true;
	sort(stack+1,stack+top+1);
	for(int i=3;i<=top;i++)
		if(stack[i]-stack[i-1]<stack[i-2])
			return true;
	return false;
}
int main()
{
	int i,x,y,p;
	cin>>n>>m;
	for(i=1;i<=n;i++)
		scanf("%d",&a[i]);
	for(i=1;i<n;i++)
	{
		scanf("%d%d",&x,&y);
		Add(x,y);Add(y,x);
	}
	DFS(1);
	for(i=1;i<=m;i++)
	{
		scanf("%d%d%d",&p,&x,&y);
		if(!p)
			puts(Check(x,y)?"Y":"N");
		else
			a[x]=y;
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值