题目大意:给定n堆石子,两人轮流操作,每个人可以合并两堆石子或拿走一个石子,不能操作者输,问是否先手必胜
直接想很难搞,我们不妨来考虑一个特殊情况
假设每堆石子的数量都>1
那么我们定义操作数b为当前石子总数+当前堆数-1
若b为奇数,则先手必胜,否则后手必胜
证明:
若当前只有一堆,则正确性显然
否则:
若b为奇数,那么先手只需进行一次合成操作,此时操作数会-1,且仍不存在大小为1的堆
因此只需要证明b为偶数时先手必败即可
若先手选择了合成操作,那么操作数-1且不存在大小为1的堆,状态回到了b为奇数的状态
若先手取走了某个大小>=3的堆中的一个石子,那么操作数-1且不存在大小为1的堆,状态回到了b为奇数的状态
若先手取走了某个大小为2的堆中的一个石子,那么后手只需要将另一个石子与其它堆合成,b的奇偶性不变且仍不存在大小为1的堆
故b为偶数时先手必败
现在回到一般情况 可能存在大小为1的堆
我们设有a个大小为1的堆,其余堆的操作数为b
那么当前的状态就可以用一个二元组(a,b)来表示
容易发现a<=50,b<=50049
于是枚举每种操作暴力记忆化搜索即可
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define M 1010
using namespace std;
char f[60][50500];
//1-先手必胜 0-先手必败
int n;
char Memorial_Search(int a,int b)
{
if(a==0) return b&1;
//当不存在大小为1的堆时按照操作数计算必胜或必败
if(

博客探讨了BZOJ 3895题目的解决方案,通过分析特殊情况下石子操作的奇偶性,得出先手必胜或必败的条件。接着,引入二元组(a, b)来表示有a个大小为1的堆和操作数为b的状态,并利用记忆化搜索的方法解决一般情况,其中a和b的范围有限,从而实现暴力求解。"
107592775,7919609,员工满意度预测:传统机器学习模型大比拼,"['机器学习', '数据挖掘', '数据分析', '逻辑回归', '回归树']
最低0.47元/天 解锁文章
3842

被折叠的 条评论
为什么被折叠?



