题目大意:给定两个序列,求有多少个匹配满足a[i]<b[i]的对数不超过k对
见http://blog.csdn.net/popoqqq/article/details/44514113
高精度已废。。。
#include <cstdio>
#include <cstring>
#include <iomanip>
#include <iostream>
#include <algorithm>
#define M 202
using namespace std;
struct Big_Int{
#define BASE 1000
int num[125],cnt;
Big_Int() {}
Big_Int(int _)
{
memset(num,0,sizeof num);
num[cnt=1]=_;
}
Big_Int& operator = (int x)
{
return *(new (this)Big_Int(x));
}
Big_Int& operator += (const Big_Int &x)
{
int i;
cnt=max(cnt,x.cnt);
for(i=1;i<=cnt;i++)
{
num[i]+=x.num[i];
if(num[i]>=BASE)
num[i+1]+=num[i]/BASE,num[i]%=BASE;
}
if(num[cnt+1]) ++cnt;
return *this;
}
Big_Int operator + (const Big_Int &x) const
{
Big_Int re=*this;re+=x;return re;
}
Big_Int& operator -= (const Big_Int &x)
{
int i;
for(i=1;i<=cnt;i++)
{
num[i]-=x.num[i];
while(num[i]<0)
num[i+1]--,num[i]+=BASE;
}
while( cnt>0 && !num[cnt] ) --cnt;
return *this;
}
Big_Int operator - (const Big_Int &x) const
{
Big_Int re=*this;re+=x;return re;
}
friend Big_Int operator * (const Big_Int &x,const Big_Int &y)
{
int i,j;
Big_Int re=0;
for(i=1;i<=x.cnt;i++)
for(j=1;j<=y.cnt;j++)
re.num[i+j-1]+=x.num[i]*y.num[j];
re.cnt=x.cnt+y.cnt;
for(i=1;i<=re.cnt;i++)
if(re.num[i]>=BASE)
re.num[i+1]+=re.num[i]/BASE,re.num[i]%=BASE;
if(!re.num[re.cnt]) re.cnt--;
return re;
}
Big_Int& operator *= (const Big_Int &x)
{
return *this=*this*x;
}
friend ostream& operator << (ostream &_,Big_Int &x)
{
int i;
printf("%d",x.num[x.cnt]);
for(i=x.cnt-1;i>0;i--)
printf("%03d",x.num[i]);
return _;
}
}f[M][M],g[M],C[M][M],fac[M],ans;
int n,k;
int a[M],b[M],next[M];
int main()
{
int i,j;
cin>>n>>k;
for(i=1;i<=n;i++)
scanf("%d",&a[i]);
for(i=1;i<=n;i++)
scanf("%d",&b[i]);
sort(a+1,a+n+1);
sort(b+1,b+n+1);
for(j=1,i=1;i<=n;i++)
{
for(;j<=n&&b[j]<=a[i];j++);
next[i]=j-1;
}
for(i=0;i<=n;i++)
{
C[i][0]=1;
for(j=1;j<=i;j++)
C[i][j]=C[i-1][j]+C[i-1][j-1];
}
for(fac[0]=1,i=1;i<=n;i++)
fac[i]=fac[i-1]*i;
f[0][0]=1;
for(i=1;i<=n;i++)
{
f[i][0]=1;
for(j=1;j<=i;j++)
f[i][j]=f[i-1][j]+f[i-1][j-1]*max(next[i]-(j-1),0);
}
for(i=n;i>=n-k;i--)
{
g[i]=f[n][i]*fac[n-i];
for(j=i+1;j<=n;j++)
g[i]-=g[j]*C[j][i];
ans+=g[i];
}
cout<<ans<<endl;
return 0;
}