题目大意:有一种卡片,正面和背面各写着一个整数,可以用一个有序数对
(x,y)
表示
有三种操作:
1.出示一张卡片
(x,y)
,获得一张卡片
(x+1,y+1)
2.出示一张卡片
(x,y)(x,y
都是偶数
)
,获得一张卡片
3.出示两张卡片
(x,y)
和
(y,z)
,获得一张卡片
(x,z)
一个人想要卡片
(1,a1),(1,a2),(1,a3),...,(1,an)
,他可以携带一张初始卡片
(x,y)(1≤x<y≤m)
,求有多少种方案
首先我们发现:
第一个操作不改变
y−x
的值
第二个操作可以使
y−x
变为原来的
12
第三个操作可以使
y−x
变为原来的任意倍
那么我们不妨猜想:一张卡片 (x,y) 是否合法只与 y−x 的值有关
事实上这个是正确的
结论:卡片
(x,y)
满足条件当且仅当
y−x
是
gcd(a1−1,a2−1,...,an−1)
的一个约数
d
的
证明:
必要性:
不妨设
y−x=d∗2k(d
为奇数
)
,那么由上面的三个性质可知,所有能凑出的卡片的差值必为
故如果
d
不是
必要性得证
充分性:
不妨设
y−x=d∗2k(d
为奇数且
d|gcd(a1−1,a2−1,...,an−1))
我们任选一个
k′
,满足
k′>=k
且
2k′≥x
那么首先我们利用
(x,y)
不断执行操作1和操作3得到
(x,x+d∗2k′)
然后我们利用操作1得到
(2k′,(1+d)∗2k′)
然后进行
k′
次操作2得到
(1,1+d)
至此我们已经得到了
(1,1+d)
,再不断进行操作1和操作3就能得到所有卡片了
证毕
然后就好办了,我们枚举
gcd(a1−1,a2−1,...,an−1)
的每个奇约数
d
,然后枚举
时间复杂度
O(d(ai)∗logm)
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define M 2020
using namespace std;
int n,m,gcd;
long long ans;
int divisor[M],tot;
void Get_Divisor(int n)
{
int i;
for(i=1;i*i<n;i++)
if(n%i==0)
{
divisor[++tot]=i;
divisor[++tot]=n/i;
}
if(i*i==n)
divisor[++tot]=i;
}
int main()
{
int i,j,x;
cin>>n>>m;
for(i=1;i<=n;i++)
{
scanf("%d",&x);
gcd=__gcd(gcd,x-1);
}
Get_Divisor(gcd);
for(i=1;i<=tot;i++)
if(divisor[i]&1)
for(j=divisor[i];j<=m;j<<=1)
ans+=m-j;
cout<<ans<<endl;
return 0;
}