[ABC294Ex] K-Coloring

题目传送门

属于一眼题,不看时间限制 8 s 8s 8s 容易被诈骗

解法

简单容斥
大概 式子就是 ∑ ( − 1 ) M ∗ K ∣ S ∣ \sum(-1)^{M}*K^{|S|} (1)MKS , M M M 为边集的大小, ∣ S ∣ |S| S 为联通块的数量
那么我们就有 空间复杂度: O ( 2 N ) = 1 e 9 O(2^N) =1e9 O(2N)=1e9 ,时间复杂度: O ( 2 N M ) O(2^NM) O(2NM)
1.用 d f s dfs dfs 搜索所有的状态,可以省去开数组的空间
2.加上剪枝,当加入一条边后,图的连通性未改变,那么后继所有状态一定都会相互抵消,直接返回 0 0 0
加上两种优化后
空间复杂度: O ( 1 ) O(1) O(1)
时间复杂度: O ( 2 N ∗ 玄学 ) O(2^{N}*玄学) O(2N玄学)

Code

#include <algorithm>
#include <iostream>

using db = double;
using ll = long long;
using namespace std;

const int N=37,mod=998244353;

int n,m,k,p[N],u[N],v[N],fa[N];

int find(int x) { return x==fa[x]?x:find(fa[x]); }

int dfs(int i,int cnt) {
    if(i==m+1) return p[cnt];
    int x=find(u[i]),y=find(v[i]);
    if(x==y) return 0;
    int f1=dfs(i+1,cnt);
    fa[y]=x;
    int f2=dfs(i+1,cnt-1);
    fa[y]=y;
    return (f1-f2+mod)%mod;
} 
int main(){
    srand(998244353);
	scanf("%d%d%d",&n,&m,&k);
    p[0]=1; for(int i=1;i<=n;i++) p[i]=1ll*p[i-1]*k%mod,fa[i]=i;
    for(int i=1;i<=m;i++) {
        scanf("%d%d",&u[i],&v[i]);
        if(rand()%2) swap(u[i],v[i]);
    }
    printf("%d\n",dfs(1,n));
}

其实就是想记录一下优化的方法

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值