损失函数总结

1. 均方误差损失函数(回归问题)

注意:当我们用MSE做为损失函数的时候,最好别用sigmoid,tanh这类的激活函数。从数学的角度来理解,sigmoid函数当x趋于正无穷或者负无穷的时候,函数值接近于1和0,也就是当自变量大于一定值的时候,函数变得非常平缓,斜率比较小,甚至变为0。

然后当斜率很小的时候,他的导数就很小,而BP在反向传播更新参数的时候,就是要靠导数。

新的参数 = 旧的参数 + 梯度*学习率

这样的话,参数基本就会保持不变

 

 

2. 交叉熵损失函数(分类问题)

求导之后,导函数中没有激活函数的导数那一项。这样就巧妙的避免了激活函数的饱和性问题。

 

 

3. softmax loss

可化简为:

 

 

举个例子:假设一个5分类问题,然后一个样本I的标签y=[0,0,0,1,0],也就是说样本I的真实标签是4,假设模型预测的结果概率(softmax的输出)p=[0.1,0.15,0.05,0.6,0.1],可以看出这个预测是对的,那么对应的损失L=-log(0.6),也就是当这个样本经过这样的网络参数产生这样的预测p时,它的损失是-log(0.6)。那么假设p=[0.15,0.2,0.4,0.1,0.15],这个预测结果就很离谱了,因为真实标签是4,而你觉得这个样本是4的概率只有0.1(远不如其他概率高,如果是在测试阶段,那么模型就会预测该样本属于类别3),对应损失L=-log(0.1)。那么假设p=[0.05,0.15,0.4,0.3,0.1],这个预测结果虽然也错了,但是没有前面那个那么离谱,对应的损失L=-log(0.3)。我们知道log函数在输入小于1的时候是个负数,而且log函数是递增函数,所以-log(0.6) < -log(0.3) < -log(0.1)。简单讲就是你预测错比预测对的损失要大,预测错得离谱比预测错得轻微的损失要大。

 

 

4. center loss

Softmax函数学习到的特征仍然有很大的类内差距,为了解决这一问题,center loss应运而生

类间距离变大了,类内距离减少了(主要变化在于类内距离:intra-class

 

 

 

 

5.Triplet Loss

通过Triplet Loss的学习后使得Positive元和Anchor元之间的距离最小,而和Negative之间距离最大。其中Anchor为训练数据集中随机选取的一个样本,Positive为和Anchor属于同一类的样本,而Negative则为和Anchor不同类的样本。、

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值